Juan Gonzalo | IPICYT |
Barajas-Ramírez | IPICYT |
https://doi.org/10.58571/CNCA.AMCA.2022.084
Resumen: Many nonlinear systems have complex behaviors where selfexcited and hidden attractors exist and some times coexist. We investigate the synchronization problem for these type systems under two different coupling configurations: drive-response and bidirectional. In the first scheme, the coupling term in the response subsystem can be design as an output feedback controller to achieve synchronization; while in the latter, since the states of both systems depend on their interaction, the coupling terms are designed in terms of their differences. As observed before synchronized behavior on a hidden attractor is very difficult to achieve. In this sense our results show that for the drive-response configuration is relatively simple to impose a synchronized behavior; however, on hidden attractors the region of attraction of the synchronized solution reduces to that of the hidden attractor. Additionally, in a bidirectional configuration the region of attraction of the synchronized behavior basically disappears making the design of a static coupling considerably more difficult. We illustrate our results with numerical simulations of systems with hidden and selfexcited attractors.
¿Cómo citar?
Gonzalo, J. & Barajas-Ramírez. On the synchronization of selfexcited and hidden attractors. Memorias del Congreso Nacional de Control Automático, pp. 498-503, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.084
Palabras clave
Referencias
- Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge U. Press, New York (2001)
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems, Phys Rep, 366, 1–101, (2002)
- Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems, Phys Rev Lett, 64(8), 821–824, (1990)
- Rosas Almeida, D. I., ´Alvarez, Jq., Barajas-Ramírez, J. G.: Robust synchronization of Sprott circuits using sliding mode control, Chaos, Solitons & Fractals, 30(1), 11–18, (2006)
- Hong, Y., Qin, H., Chen, G.: Adaptive synchronization of chaotic systems via state or output feedback control, Int J. Bifurc. Chaos, 11(4), 1148–1158, (2001)
- Pan, S., Yin, F.: Optimal Control of Chaos with Synchronization, Int J. Bifurc. Chaos, 7(12), 2855–2860, (1997)
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics, Phys Rep 424, 175–308, (2006)
- Su, H.,Wang, X.: Pinning Control of Complex Networked Systems Synchronization, Consensus and Flocking of Networked Systems via Pinning, Springer, Shanghai (2013)
- Ott, E.: Chaos in dynamical systems, Cambridge Universty Press, Canada (1993)
- Leonov, G. A., Kuznetsov, N. V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hid den chaotic attractor in Chua circuits, Int J. Bifurc. Chaos, 23(1), 1330002, 1–69 (2013)
- Pham, V. T., Volos, C., Kapitaniak, T.: Systems with hidden attractors: From theory to realization in circuits, Springer, Switzerland (2017)
- Chaudhuri, U., Prasad, A.: Complicated basins and the phenomenon of amplitude death in coupled hidden attractors, Phys Lett A, 378, 713–718 (2014)
- Kuznetsov, N. V., Leonov, G. A.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, Proc. 19th World Congress IFAC, Cape Town, South Africa, 5445–5454 (2014)
- Sprott, J. C.: Some simple chaotic flows, Phys Rev E, 50, R647 (1994).
- Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria, Phys Lett A, 376(2), 102–108 (2011)
- Hu, X., Liu, C., Liu, L., Ni, J., Li, S.: Multi-scroll hidden attractors in improved Sprott A system, Nonlinear Dyn, 86, 1725–1734 (2016)
- Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium, Chaos, Solitons & Fractals, 57, 79–84 (2013)
- Jafari, M. A., Mliki, E., Akgul, A., Pham, V. T., Kingni, S. T., Wang, X. Jafari, S.: Chameleon: the most hidden chaotic flow, Nonlinear Dyn, 88, 2303–2317 (2017)
- Wang, X., Chen, G.: A chaotic system with only one stable equilibrium, Comm. in Nonlinear Sci and Num. Sim., 17(3), 1264–1272 (2012)
- Yang, Q., Chen, G.: A chaotic system with one saddle and two stable node-foci, Int J. Bifurc. Chaos, 18, 1393–1414 (2008)
- Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., Prasad, A.: Hidden attractors in dynamical systems, Phys Rep, 637, 1–50 (2016)
- Escalante-Gonz´alez, R. J., Campos-Cant´on, E.: Multistable systems with hidden and self-excited scroll attractors generated via piecewise linear systems, Complexity, 2020, 7832489, 1–12, (2020)
- Delgado-Aranda, F., Campos-Cantón, I., Tristán -Hernández, E., Salas-Castro, P.: Hidden attractors from the switching linear systems, Revista Mexicana de F´ısica, 66(5), 683–691 (2020)
- Escalante-González, R. J., Campos-Cantón, E.: Emergence of Hidden Attractors through the Rupture of Heteroclinic-Like Orbits of Switched Systems with Self-Excited Attractors, Complexity, 2021, 5559913, 1–24, (2021)
- Pham, V., Jafari, S., Volos, C., Kapitaniak, T.: Different Families of Hidden Attractors in a New Chaotic System with Variable Equilibrium, Int J. Bifurc. Chaos, 27(9), 1750138 (2017)
- Zhang, S., Zeng, Y.: A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees, Chaos, Solitons & Fractals, 120, 25–40, (2019)