MU. Cruz-Velázquez | Universidad Autónoma de San Luis Potosí |
V. Cárdenas | Universidad Autónoma de San Luis Potosí |
I. Yepez-Lopez | Universidad Autónoma de San Luis Potosí |
M. González | Universidad Autónoma de San Luis Potosí |
R. Alvarez-Salas | Universidad Autónoma de San Luis Potosí |
https://doi.org/10.58571/CNCA.AMCA.2022.048
Resumen: This work proposes an operation strategy for a single-phase photovoltaic inverter to have the capability to change its operation mode from a feeding to a forming converter within an electrical microgrid. In addition, the proposed system provides AC mains support functions through reactive power injection during fault conditions. The IEEE 1547-2018 standard is taken as a basis, which considers the need to provide support in the event of low/high voltage variations, outside the normal operating limits. To meet some of the control objectives, a passivity-based control (PBC) is used. In order to validate the operating conditions and AC mains support functions some simulations are carried out.
¿Cómo citar?
Cruz-Velázquez, U., Cárdenas, V., Yepez-Lopez, I., González, M. & Alvarez-Salas, R. Operation Strategy for Photovoltaic Inverters with Microgrid Support Commuting from Grid-Feeding to Grid-Forming. Memorias del Congreso Nacional de Control Automático, pp. 199-204, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.048
Palabras clave
Sistemas Electrónicos de Potencia; Sistemas Eléctricos de Potencia; Control Basado en pasividad
Referencias
- Adhikari, S. and Li, F. (2014). Coordinated v-f and p-q control of solar photovoltaic generators with mppt and battery storage in microgrids. IEEE Transactions on Smart Grid, 5(3), 1270–1281. doi:10.1109/TSG.2014.2301157.
- Ciobotaru, M., Teodorescu, R., and Blaabjerg, F. (2006). A new single-phase pll structure based on second order generalized integrator. In 2006 37th IEEE Power Electronics Specialists Conference, 1–6. doi:10.1109/pesc.2006.1711988.
- González -García, M. (2004). Estudio de la transformación dq para el cálculo de potencia activa y reactiva en filtros activos de corriente para cancelación armónica. Master’s thesis, Universidad Autónoma de San Luis Potosi.
- Hatziargyriou, N. (2014). Microgrids: architectures and control. John Wiley & Sons. IEEE-Std.1547 (2018). Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), 1–138. doi:10.1109/IEEESTD.2018.8332112.
- Ortega, R., Perez, J.A.L., Nicklasson, P.J., and Sira-Ramirez, H.J. (2013). Passivity-based control of Euler Lagrange systems: mechanical, electrical and electromechanical applications. Springer Science & Business Media.
- Pogaku, N., Prodanovic, M., and Green, T.C. (2007). Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on Power Electronics, 22(2), 613–625. doi:10.1109/TPEL.2006.890003.
- Quiroz-Vázquez, F. (2019). Desarrollo de un Inversor Fotovoltaico con Funciones Autónoma para Generación Eléctrica Distribuida. Master’s thesis, Universidad Autónoma de San Luis Potosí.
- SIWG (2014). Recommendations for updating the technical requirements for inverters in distributed energy resources. Technical report, Smart Inverter Working Group Recommendations.
- Tabatabaee, S., Karshenas, H.R., Bakhshai, A., and Jain, P. (2011). Investigation of droop characteristics and x/r ratio on small-signal stability of autonomous microgrid. In 2011 2nd Power Electronics, Drive Systems and Technologies Conference, 223–228. doi: 10.1109/PEDSTC.2011.5742422.
- Yang, Y., Blaabjerg, F., and Wang, H. (2014). Lowvoltage ride-through of single-phase transformerless photovoltaic inverters. IEEE Transactions on Industry Applications, 50(3), 1942–1952. doi: 10.1109/TIA.2013.2282966.