Sebastián Alexander Andrade Becerra | Universidad Nacional Autónoma de México |
Luis Alvarez-Icaza | Universidad Nacional Autónoma de México |
Jesus Alvarez | Universidad Autónoma Metropolitana-Iztapalapa |
Lisette Samarti Rios | Universidad Autónoma Metropolitana-Iztapalapa |
Resumen: The problem of control and monitoring the operation of a batch hydrothermal (HTC) reactor is addressed, guarantying safe, reliable and efficient operation. The combination of chemical reactors engineering, detectability, passivity, optimality and dynamical inversion tools leads to an event-driven output feedback controller that maximizes the economic profit of the process. The scheme has: (i) an off-line nominal motion generator so that the process is carried out maintaining a compromise between economic profit, speed and effort of control, safety and tolerance against load, measurement and parametric errors, (ii) an event controller that decides the batch end time, guaranteeing the maximum economic profit per unit time, and (iii) a tracking controller that tracks the reactor’s motion along an off-line optimized motion. The proposed methodology is applied via numerical simulations of a representative example.
¿Cómo citar?
Sebastián Alexander Andrade Becerra, Jesus Alvarez, Luis Alvarez-Icaza & Lisette Samarti Rios. Optimal Operation and Control of a Batch Hydrothermal Carbonization Reactor. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
Hydrothermal carbonization, batch control, optimal control, material balance control, estimators
Referencias
- Alvarez, J., Castellanos-Sahag´un, E., Fernandez, C., and Aguirre, S. (2005). Optimal closed-loop operation of binary batch distillation columns. IFAC Proceedings Volumes, 16. doi:10.3182/20050703-6-CZ-1902.01676.
- Alvarez, J. and Fern´andez, C. (2009). Geometric estima- ´ tion of nonlinear process systems. Journal of process control, 19(2), 247–260.
- Alvarez, J., Zaldo, F., and Oaxaca, G. (2004). Chapter d6 towards a joint process and control design for batch processes: application to semibatch polymer reactors. Computer Aided Chemical Engineering, 17. doi: 10.1016/S1570-7946(04)80076-2.
- Basso, D., Weiss-Hortala, E., Patuzzi, F., and Fiori, L. (2015). Hydrothermal carbonization of offspecification compost: a byproduct of the organic municipal solid waste treatment. Bioresource technology, 182, 217—224. doi:10.1016/j.biortech.2015.01.118.
- Elsgotz, L. (1969). Ecuaciones Diferenciales y cálculo variacional. Moscu.
- Felder, R. and Rousseau, R. (2005). Elementary principles of chemical processes. Jhon Wiley and Sons, Inc.
- Funke, A. and Ziegler, F. (2011). Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresource Technology, 102(16), 7595 – 7598. doi: https://doi.org/10.1016/j.biortech.2011.05.016.
- Gómez, J., Corsi, G., and Pino-Cortés, E. (2020). Modeling and simulation of a continuous biomass hydrothermal carbonization process. Chemical Engineering Communications, 207(6), 751–768. doi: 10.1080/00986445.2019.1621858.
- Hahn, W. (1967). Stability of motion. Springer, Berlin, Heiderberg.
- Hirschorn, R. (1979). Invertibility of multivariable nonlinear control systems. IEEE Transactions on Automatic Control, 24(6), 855–865.
- Jatzwauck, M. and Schumpe, A. (2015). Kinetics of hydrothermal carbonization (htc) of soft rush. Biomass and Bioenergy, 75. doi:10.1016/j.biombioe.2015.02.006.
- LaSalle, J. and Lefschetz, S. (1961). Stability by Liapunov’s Direct Method with Applications. Academic Press, New York, 111 Fifth Avenue.
- Peterson, A. and Vogel, F. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub and supercritical water technologies. Energy and Environmental Science. doi:10.1039/b810100k.
- Seferlis, P. and Georgiadis, M. (2004). The Integration of Process Design and Control, Volume 17. Elsevier. doi:10.1016/S1570-7946(04)80050-6.
- Sontag, E., Agachev, A., Utkin, V., Morse, A., and Sussman, H. (2004). Nonlinear and optimal control theory. Springer, Cetraro, Italy.
- V. Lakshmikantham, S. Leela, A.A.M. (1990). Practical Stability of Nonlinear Systems. World Scientific.