Héctor Hernández-Escoto | Universidad de Guanajuato |
Laurent Dewasme | Université de Mons, Mons, Belgium |
Alain Vande Wouwer | Université de Mons, Mons, Belgium |
https://doi.org/10.58571/CNCA.AMCA.2022.077
Resumen: In this work, extremum seeking control (ESC) is applied to optimize the operating conditions of a distillation column in continuous operation, to separate the components of an ideal binary mixture. The approach is based on an objective function that requires both the compositions of the distillate stream and bottom stream in an equal distance from complete purity. Numerical simulations show how the ESC drives the process to the minimum of the objective function, which is typically determined through the construction of a response surface of the objective function with respect to the process inputs. The performance of the standard ESC is compared with an accelerated version including a proportional action.
¿Cómo citar?
Hernández-Escoto, H., Dewasme, L. & Vande Wouwer, A. Optimal Operation of a Distillation Process Through Extremum Seeking Control. Memorias del Congreso Nacional de Control Automático, pp. 463-468, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.077
Palabras clave
Control de Procesos; Control Óptimo; Control de Sistemas No Lineales
Referencias
- Ariyur, K.B. and Krstic, M. (2003). Real-time Optimization by Extremum-seeking Control, Wiley-Interscience Edition, John Wiley & Sons, INC, 2003.
- Dewasme, L., Feudjio Letchindjio, C. G., Torres Zuniga, I. and Vande Wouwer, A. (2017). Micro-algae productivity optimization using extremum-seeking control, 25th Mediterranean Conference on Control and Automation (MED), 672-677.
- Dewasme, L. and Vande Wouwer, A. (2020), Model-free extremum seeking control of bioprocesses: A review with a worked example, Processes, 8(10),1209.
- Guay, M. (2016). A perturbation-based proportional integral extremumseeking control approach, IEEE Transactions on Automatic Control, 61(11), 3370–3381.
- Javaloyes-Antón, J., Kronqvist, J., and Caballero, J.A. (2022). Simulation-based optimization of distillation processes using an extended cutting plane algorithm, Computers and Chemical Engineering, 159, 107655.
- Krstic, M. and Wang, H.H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica, 36, 595–601.
- Jacobsen, W.W. and Skogestad, S. (1994). Instability of distillation columns. AIChE Journal, 40(9), 1466-1478.
- López-Arenas, L., Mansouri, S.S., Sales-Cruz, M., Gani, R., and Pérez-Cisneros, E.S. (2019). A Gibbs energy-driving force method for the optimal design of non-reactive and reactive distillation columns. Computers and Chemical Engineering, 128(9), 53-68.
- Luyben, W.L. (1996). Process Modelling, Simulation and Control for Chemical Engineers, 129-132, McGraw-Hill, USA.
- Sawaragi, Y., Takamatsu, T., Fukunaga, K., Nakanishi, E., Tamura, H. (1971). Dynamic version of steady state optimizing control of a distillation column by trial method, Automatica, 7 (4), 509-516.
- Skogestad, S. (2000). Self-optimizing control: the missing link between steady-state optimization and control, Computers & Chemical Engineering 24 (2-7), 569-575.
- Torgashov, A.Y., Park, K.-C., Choi, H.-C., Choe, Y.-K. (2004). Real-Time Optimization of Distillation Column via Sliding Modes, IFAC Proceedings Volumes 37 (1), 709-712.
- Vazquez-Castillo, Segovia-Hernández, J.G., and Ponce-Ortega, J.M. (2015). Multiobjective Optimization Approach for Integrating Design and control in multicomponent distillation sequences, Industrial and Engineering Chemistry Research, 54(49), 12320-12330.
- Wang, C., Zhuang, Y., Liu, L., Zhang, L., and Du, J. (2020). Design and comparison of conventional and side-stream extractive distillation sequences for separating the methanol-toluene binary azeotrope with intermediate boiling entrainer, Computers and Chemical Engineering, 143(12), 107115.