Kharuf Gutiérrez, Samy | Instituto Tecnológico de Tijuana |
Ferreira de Loza, Alejandra | Instituto Politecnico Nacional |
Aguilar, Luis T. | Instituto Politecnico Nacional |
Coria, Luis N. | Instituto Tecnológico de Tijuana |
https://doi.org/10.58571/CNCA.AMCA.2023.049
Resumen: This work presents a continuous robust control method for stabilizing the reaction wheel pendulum, despite the effect of external perturbations and using only output information. To achieve this, first, an extended high-order sliding-modes observer estimates the states and identifies the perturbations, theoretically, in finite time. Then, an active disturbance rejection scheme considers the estimated states and the identified perturbation. As a result, the closed-loop system is robust against external perturbations, and the system trajectories converge to the origin. Experimental results illustrate the performance and advantages of the presented algorithm.
¿Cómo citar?
Kharuf Gutiérrez, Samy; Ferreira de Loza, Alejandra; Aguilar, Luis T.; Coria, Luis N. Output-Feedback Stabilization of the Reaction Wheel Pendulum Via Active Disturbance Rejection Control. Memorias del Congreso Nacional de Control Automático, pp. 223-228, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.049
Palabras clave
Control Robusto; Control de Sistemas No Lineales; Robótica y Mecatrónica
Referencias
- Angulo, M.T., Fridman, L., y Moreno, J.A. (2013). Output-feedback finite-time stabilization of disturbed feedback linearizable nonlinear systems. Automatica, 49(9), 2767-2773.
- Aström, K., Block, D., y Spong, M. (2007). The reaction wheel pendulum. Morgan and Claypool Publishers.
- Chalanga, A., Kamal, S., y Bandyopadhyay, B. (2013). Continuous integral sliding mode control: A chattering free approach. In 2013 IEEE International Symposium on Industrial Electronics, 1-6.
- Cruz-Zavala, E. y Moreno, J.A. (2019). Levant’s arbitrary-order exact differentiator: A Lyapunov approach. IEEE Trans. Automat. Contr., 64(7), 3034-3039.
- Filippov, A.F. (1988). Differential Equations with Discontinuous Righthand side. Springer, Dordrecht.
- Gutierrez-Oribio, D., Mercado Uribe, J., Moreno, J., y Fridman, L. (2021a). Reaction wheel pendulum control using fourth-order discontinuous integral algorithm. J. Robust Nonlinear Control., 31, 185-206.
- Gutierrez-Oribio, D., Angel Mercado-Uribe, Moreno, J.A., y Fridman, L. (2021b). Joint swing-up and stabilization of the reaction wheel pendulum using discontinuous integral algorithm. Nonlinear Analysis: Hybrid Systems, 41, 101042.
- Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900-906.
- Hernandez-Guzman, V.M. y Silva-Ortigoza, R. (2019). Control of an Inertia Wheel Pendulum, 921-950. Springer International Publishing, Cham.
- Ramirez-Neria, M., Sira-Ramirez, H., Garrido-Moctezuma, R., y Luviano-Juarez, A. (2019). Active disturbance rejection control of the inertia Wheel pendulum through a tangent linearization approach. Int J Control Autom Syst, 17, 18-28.
- Spong, M.W., Corke, P., y Lozano, R. (2001). Nonlinear control of the reaction wheel pendulum. Automatica, 37(11), 1845-1851.
- Teja, G.P., Dhabale, A., y Waghmare, T. (2020). Nonlinear control of the reaction wheel pendulum using passivity-based control and backstepping control. In 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), 1-6.
- Trentin, J.F., da Silva, S., Ribeiro, J.M.d.S., y Schaub, H. (2021). An experimental study to swing up and control a pendulum with two reaction wheels. Meccanica, 56(4), 981-990.
- Utkin, V., Guldner, J., y Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems. CRC press.