Uribe-Mora, Christian | Universidad De Guanajuato |
Lopez-Caamal, Fernando | Universidad De Guanajuato |
Resumen: Solar collectors are heat exchangers that transfer solar energy to a fluid in the form of heat; however, the problem is that solar energy is not constant, and it is essential for industrial applications the deliver a continuous thermal load or constant temperature. In this paper, we avail of a nonlinear mathematical model developed by us. Such a model predicts the collector's output temperature subject to time-varying, unknown solar irradiance, ambient temperature, and wind speed. To deliver a constant temperature at the collector outlet, we designed a PI control, considering the derivative of the input flow (dṁ/dt) to the collector as a manipulated variable. We show its applicability through simulation but considering natural environmental conditions.
¿Cómo citar?
Uribe-Mora, Christian & Lopez-Caamal, Fernando. Output Temperature Control of a Flat Plate Solar Collector Subject to Time-Varying Environmental Conditions. Memorias del Congreso Nacional de Control Automático, pp. 92-96, 2021.
Palabras clave
Solar energy, solar collector, modeling, control, outlet temperature
Referencias
- Abril Ortega, F.X., Urquizo Acosta, G.I., Soriano Idrovo, G., and Enrique (2017). Diseño de dos bancos de prueba para colectores solares de placa plana. Revista Tecnológica ESPOL-RTE, 30 (2), 37-55.
- Alvarez, J., Yebra, L., and Berenguel, M. (2009). Adaptative repetitive control for resonance cancellation of a distributed solar collector field. International Journal of Adaptative Control and Signal Processing, 23 (April), 331-352. Doi: 10.1002/acs.
- Atkins, M.J., Walmsley, M.R., and Morrison, A.S. (2010). Integration of solar termal for improved energy efficiency in low-temperature-pinch industrial processes. Energy, 35(5), 1867-1873.
- Duffie, J.A. and Beckman, W.A. (1982). Solar engineering of termal processes, volumen 3. Doi: 10.1016/0142-694x(82)90016-3.
- Frey, P., Fischer, S., Drück, H., and Jakob, K. (2015). Monitoring Results of Solar Processes Heat System Installed at the Textile Company in Southern Germany. Energy Prcedia, 70(June), 615-620.
- Guzmán, J.L., Berenguel, M., Merchan, A., Gil, J.D., and Alavarez, J. (2020). A virtual lab for modeling and control of a solar collector fiels. IFAC-Papers Online, 53(2), 17216-17221. Doi: 10.1016/j.proeng.2012.06.337.
- Hamed, M., Fellah, A., and Brahim, A.B. (2013). Parametric sensitive studies of the performance of a flat plate solar collector in transient behaveor. Energy Conversion and Management.
- Pandey, K.M. and Chaurasiya, R. (2017). A review on análisis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews, 67, 641-650.
- Sarway, J., Khan, M.R., Rehan, M., Asim, M., and Kazim, A.H. (2020). Perfonmance análisis of a flat plate collector to achieve a fixed outlet temperatura under semi-arid climatic conditios. Solar Energy. 2007 (April), 503-516.
- Schweigner, H., Mendes, J.F., Benz, N., Hennecke, K., Prieto, G., Cusí, M., and Goncales, H. (2013). The potencial fo solar heat in industrial processes a state of the art review for spain and Portugal. 53(9), 1689-1699. Doi: 10.1017/CBO9781107415324.004.
- Silvano Mendoza, H.H. and Martínez Rodríguez, G. (2018). Modelado teórico de uncolector solar de baja temperatura en estado transitorio. Jóvenes en la ciencia, 4(1), 2805-2809.
- Sun, C., Liu, Y., duan, C., Zheng, Y., Chang, H., and Shu, S. (2016). A mathematicka model to investigate on the terminal performance of a flat plate solar air collector and its experimental verification. Energy Conversion and Management, 115, 43-51.
- Tiwari, G.N. and Sahota, L. (2021). Solar collectors. 9783329268675.
- Uribe-Mora, C., López-Caamal, F., Martínez-Rodríguez, G., and Fuentes-Silva, A.L. (2021). Modeling a flat plate solar collector subject to time-varying anviromental conditions. V Conferencia Colombiana de Control Automático, 4.
- Vannoni, C., Battisti, R., and Drigo, S. (2008). Potential for solar heat in industrial processes.