| Juan A. Villanueva-Loredo | Universidad Autónoma de San Luis Potosí |
| Diego Langarica-Córdoba | Universidad Autónoma de San Luis Potosí |
| Panfilo R. Martinez-Rodriguez | Universidad Autónoma de San Luis Potosí |
| José S. Murguía-Ibarra | Universidad Autónoma de San Luis Potosí |
| Christopher J. Rodriguez-Cortes | Universidad Autónoma de San Luis Potosí |
| Ángel Hernández-Gómez | Universidad Autónoma de San Luis Potosí |
https://doi.org/10.58571/CNCA.AMCA.2025.020
Resumen: In this work, a passivity-based controller for a step-up/step-down converter is designed and validated through numerical results. The proposed control scheme consists of two control loops: an inner loop and an outer loop. The inner control loop is designed using passivity-based control techniques to track the inductor currents through damping injection and energy shaping. Additionally, an uncertainty estimator based on the immersion and invariance (I&I) approach is employed to enhance the robustness of the inner control loop. Meanwhile, the voltage regulation is handled by a PI controller, which maintains the voltage at the desired reference level. The proposed converter and control strategy are well-suited for regulating the voltage fluctuations of lithium-ion batteries when used as the input source to the converter.

¿Cómo citar?
Villanueva-Loredo, J., Langarica-Córdoba, D., Martinez-Rodriguez, P., Murguía-Ibarra, J., Rodriguez-Cortes, Ch. & Hernández-Gómez, A. (2025). Passivity-Based Controller Applied to a Step-up/Step-down Converter for Battery Discharge Voltage Regulation. Memorias del Congreso Nacional de Control Automático 2025, pp. 115-120. https://doi.org/10.58571/CNCA.AMCA.2025.020
Palabras clave
Passivity-based control, nonlinear control, parameter estimation, DC-DC set-up/step-down converter, lithium-ion batteries.
Referencias
- Astolfi, A., Karagiannis, D., and Ortega, R. (2008). Nonlinear and Adaptive Control with Applications. Springer, London.
Beltrán, C.A., Diaz-Saldierna, L.H., Langarica-Cordoba, D., and Martinez-Rodriguez, P.R. (2023). Passivitybased control for output voltage regulation in a fuel cell/boost converter system. Micromachines, 14(1). - Cavalcante, K.D.N., Kattel, M.B.E., Pra,ca, P.P., Junior, D.S.O., Antunes, F.L.M., and Barreto, L.H.S.C. (2024). 13 kw high-efficiency six-arm high-gain transformerless floating interleaved bidirectional buck–boost dc–dc converter for ev applications. IEEE Access, 12, 183901– 183917.
- Gholizadeh, H., Gorji, S.A., and Sera, D. (2023). A quadratic buck-boost converter with continuous input and output currents. IEEE Access, 11, 22376–22393.
- Horiba, T. (2014). Lithium-ion battery systems. Proceedings of the IEEE, 102(6), 939–950.
- Kim, K.D., Lee, H.M., Hong, S.W., and Cho, G.H. (2019). A noninverting buck–boost converter with state-based current control for li-ion battery management in mobile applications. IEEE Transactions on Industrial Electronics, 66(12), 9623–9627.
- Komurcugil, H. (2015). Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters. IET Power Electronics, 8(8), 1558–1570.
- Langarica-Cordoba, D. and Ortega, R. (2015). An Observer-Based Scheme for Decentralized Stabilization of Large-Scale Systems With Application to Power Systems. Asian Journal of Control, 17(1), 124–132.
- Mishra, A. and De Smedt, V. (2020). A novel hybrid buck-boost converter topology for li-ion batteries with increased efficiency. In 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4.
- Mishra, A., Zhu, W., Wicht, B., and Smedt, V.D. (2023). An all-1.8-v-switch hybrid buck–boost converter for libattery-operated pmics achieving 95.63IEEE Transactions on Power Electronics, 38(3), 3444–3454.
- Ortega, R., Loria, A., Nicklasson, P.J., and Sira-Ramírez, H. (1998). Passivity-Based Control of Euler-Lagrange Systems. Springer.
Rahman, M.D., Nazaf Rabbi, M., and Sarowar, G. (2021). Development of dc-dc converters – a review. In 2021 International Conference on Computational Performance Evaluation (ComPE), 341–347. - Ren, X., Tang, Z., Ruan, X., Wei, J., and Hua, G. (2008). Four switch buck-boost converter for telecom dc-dc power supply applications. In 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 1527–1530.
- Savoye, F., Venet, P., Millet, M., and Groot, J. (2012). Impact of periodic current pulses on li-ion battery performance. IEEE Transactions on Industrial Electronics, 59(9), 3481–3488.
- Villanueva-Loredo, J.A., Martinez-Rodriguez, P.R., Rodriguez-Cortés, C.J., Langarica-Cordoba, D., Hernández-Gómez, A., and Guilbert, D. (2025). Analysis and control design of a step-up/step-down converter for battery-discharge voltage regulation. Electronics, 14(5).
- Zúñiga-Ventura, Y.A., Langarica-Córdoba, D., Leyva-Ramos, J., Díaz-Saldierna, L.H., and Ram´ırez-Rivera, V.M. (2018). Adaptive backstepping control for a fuel cell/boost converter system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(2), 686–695.
