Rascon, Julian | Univ. De Sonora |
Garcia Delgado, Luis Arturo | Univ. De Sonora |
Noriega, Benito | Univ. De Sonora |
Garcia, Alejandro | Univ. De Sonora |
Resumen: The purpose of this work is to show the control of a quad-rotor aircraft using the velocity field method, which is a suitable strategy to generate the trajectory that the quad-rotor must follow. The proposed field is two-dimensional, because of that, we must impose some restrictions: the altitude (z) and the yaw angle (psi) are fixed at a desired value, hence the system is restricted to behave as two independent systems of four integrators in cascade for x and y coordinates. The nested saturation controller is used to track the desired velocities in both: x-theta and y-phi subsystems. This controller is exponentially stable, thus, a correct tracking could be guaranteed. Simulations results show the effectiveness of this proposal.
¿Cómo citar?
J. Rascón-Enríquez, L. A. García-Delgado, J. R. Noriega & A. García-Juárez. Quad-Rotor Control Using Velocity Field Method. Memorias del Congreso Nacional de Control Automático, pp. 400-405, 2018.
Palabras clave
quad-rotor, tracking trajectory, velocity field
Referencias
- Castillo, P., Lozano, R. & Dzul, A. (2004), ‘Stabilization of a mini-rotorcraft having four rotors.’, International Conference on Intelligent Robots and Systems .
- Fukui, Y. & Wada, T. (2016), ‘Velocity field control with energy compensation toward therapeutic exercise’, IEEE 55th Conference on Decision and Control (CDC) pp. 835–842.
- García-Delgado, L. & Dzul, A. (2009), ‘Formation control for quad-rotor aircrafts based on potential functions.’, Congreso Anual de la Asociación de México de Control Automático.
- García-Delgado, L., Dzul, A., nez, V. S. & Llama, M. (2012), ‘Quad-rotors formation based on potential functions with obstacle avoidance.’, IET Control Theory and Applications 6, 1787–1802.
- Li, P. Y. H. (1995), ‘Self-optimizing control and passive velocity field control of intelligent machines’, Doctoral thesis .
- Moreno, J. (2007), ‘Velocity field control of robot manipulators by using only position measurements’, Journal of the Franklin Institute 344, 1021–1038.
- Moreno, J. & R.Kelly (2003), ‘Hierarchical velocity field control for robot manipulators.’, International Conference on Robotics & Automation pp. 4374–4379.
- Narikiyo, H. J. A. T. & Kawanishi, M. (2017), ‘Neural network velocity field control of robotic exoskeletons with bounded input’, IEEE International Conference on Advanced Intelligent Mechatronics (AIM) pp. 1363– 1368.
- Pérez -D’Arpino, C., Medina-Meléndez, W., Fermín, L., Guzmán, J., Fernández -López, G. & Grieco, J. C. (2008), ‘Dynamic velocity field angle generation for obstacle avoidance in mobile robots using hydrodynamics’, IBERAMIA pp. 372–381.
- Sanchez, A., Garcia, P., Castillo, P. & Lozano, R. (2008), ‘Simple real-time stabilization of vertical takeoff and landing aircraft with bounded signals.’, Journal of Guiadance, Control, and Dynamics 31(4), 1166–1176.
- Teel, A. R. (1992), ‘Global stabilization and restricted tracking for multiple integrators with bounded controls.’, Systems & Control Letters 18, 165–171.