Morales Valdez, Jesús | Universidad Autónoma de la Ciudad de México |
Mujica-Ortega, Hoover | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2023.083
Resumen: This article presents the evaluation of a real-time monitoring system based on acceleration data obtained from a reduced-scale 5-story building prototype. Development is achieved under the Internet of Things (IoT) approach through the cloud using the MQTT messaging protocol. The damage evaluation is achieved by comparing 2 different states of the structural system, for this, the parameters of the civil structure model are used, which are estimated using the normalized least squares algorithm with forgetting factor. In this stage, the algorithms are programmed in Matlab-Simulink and executed on a RaspBerry PI 4. The experimental results confirm the versatility of the proposal and the relevance of the used decentralized communication architectures for real-time monitoring.
¿Cómo citar?
Morales Valdez, Jesús; Mujica-Ortega, Hoover. Real-time monitoring system for damage diagnosing on civil structures using the Internet of Things (IoT). Memorias del Congreso Nacional de Control Automático, pp. 425-430, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.083
Palabras clave
Sistemas Electromecánicos; Tecnología para Control; Control Supervisor
Referencias
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., and Inman, D.J. (2017). Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388, 154-170.
- Atha, D.J. and Jahanshahi, M.R. (2018). Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Structural Health Monitoring, 17(5), 1110-1128.
- Carden, E.P. and Fanning, P. (2004). Vibration based condition monitoring: a review. Structural health monitoring, 3(4), 355-377.
- Ceravolo, R., Erlicher, S., and Fragonara, L.Z. (2013). Comparison of restoring force models for the identification of structures with hysteresis and degradation. Journal of Sound and Vibration, 332(26), 6982-6999.
- Clinton, J.F., Bradford, S.C., Heaton, T.H., and Favela, J. (2006). The observed wander of the natural frequencies in a structure. Bulletin of the seismological society of America, 96(1), 237-257.
- Das, S., Saha, P., and Patro, S. (2016). Vibrationbased damage detection techniques used for health monitoring of structures: a review. Journal of Civil Structural Health Monitoring, 6, 477-507.
- Doebling, S.W., Farrar, C.R., Prime, M.B., and Shevitz, D.W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literatura review.
- Farrar, C.R., Doebling, S.W., and Nix, D.A. (2001). Vibration–based structural damage identification. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778), 131-149.
- Farrar, C.R. and Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303-315.
- Lampropoulos, G., Siakas, K., and Anastasiadis, T. (2018). Internet of things (iot) in industry: contemporary application domains, innovative technologies and intelligent manufacturing. people, 6(7).
- Liu, Y.Y., Ju, Y.F., Duan, C.D., and Zhao, X.F. (2011). Structure damage diagnosis using neural network and feature fusion. Engineering applications of artificial intelligence, 24(1), 87-92.
- Loh, C.H., Mao, C.H., Huang, J.R., and Pan, T.C. (2011). System identification and damage evaluation of degrading hysteresis of reinforced concrete frames. Earthquake Engineering & Structural Dynamics, 40(6), 623-640.
- Morales-Valdez, J., Alvarez-Icaza, L., and Sanchez-Sesma, F.J. (2018). Shear building stiffness estimation by wave traveling time analysis. Structural Control and Health Monitoring, 25(1), e2045.
- Morales-Valdez, J., Lopez-Pacheco, M., and Yu, W. (2020). Automated damage location for building structures using the hysteretic model and frequency domain neural networks. Structural Control and Health Monitoring, 27(9), e2584.
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., and Czarnecki, J.J. (2003). A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory, USA, 1, 16.
- Wan, Z., Wang, T., Li, S., and Zhang, Z. (2018). A modified particle filter for parameter identification with unknown inputs. Structural Control and Health Monitoring, 25(12), e2268.