| Daniel Enrique Rivas Cisneros | Universidad Autónoma de Nuevo León |
| David Alejandro Díaz Romero | Universidad Autónoma de Nuevo León |
| Efraín Alcorta García | Universidad Autónoma de Nuevo León |
https://doi.org/10.58571/CNCA.AMCA.2025.009
Resumen: In this work, a recurrence-based measure is introduced to identify incipient faults. The approach is demonstrated using a mass-spring-damper system, where the damper’s degradation is simulated by reducing its value relative to the nominal condition. The proposed method offers two key advantages: it eliminates the need for an explicit model of the system being monitored, and it exhibits high sensitivity to minor faults. One disadvantage of the proposed method is its dependence on data. The effectiveness of recurrence measures can be heavily influenced by the quality and quantity of the data.
¿Cómo citar?
Rivas Cisneros, D., Díaz Romero, D. & Alcorta García, E. (2025). Fault Diagnosis Framework for a CSTR Bioreactor Integrating ANFIS and Zonotopic Estimation. Memorias del Congreso Nacional de Control Automático 2025, pp. 50-55. https://doi.org/10.58571/CNCA.AMCA.2025.009
Palabras clave
Incipient faults, Recurrence analysis, Shannon entropy, Vibration analysis, Dynamical systems.
Referencias
- Baghdadi, G., Amiri, M., Falotico, E., and Laschi, C. (2021). Recurrence quantification analysis of eeg signals for tactile roughness discrimination. International Journal of Machine Learning and Cybernetics, 12, 1–22. doi:10.1007/s13042-020-01224-1.
- Braun, T., Kraemer, K.H., and Marwan, N. (2022). Recurrence flow measure of nonlinear dependence. The European Physical Journal Special Topics, 232. doi: 10.1140/epjs/s11734-022-00687-3.
- Ding, S.X. (2021). Advanced methods for fault diagnosis and fault-tolerant control, volume 184. Springer.
- Eckmann, J.P., Kamphorst, S.O., and Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4(9), 973. doi:10.1209/0295-5075/4/9/004. URL https://dx.doi.org/10.1209/0295-5075/4/9/004.
- Gao, H., Sun, J., E, S., and Chi, M. (2024). Cavitation induced hydraulic yaw damper failure and its effect on railway vehicle dynamic stability. Engineering Failure Analysis, 161, 108318. doi: https://doi.org/10.1016/j.engfailanal.2024.108318.
- Garcia, E.A. and Frank, P. (1999). A novel design of structured observer-based residuals for fdi. In Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), volume 2, 1341–1345. IEEE.
- Garcia, S., Miguel, R., and Figueroa-Nazuno, J. (2013). Characterization of ground motions using recurrence plots. Geof´ısica internacional, 52, 209–227. doi: 10.1016/S0016-7169(13)71473-9.
- Hirata, Y. and Aihara, K. (2011). Erratum: Devaney’s chaos on recurrence plots. Physical Review E – PHYS REV E, 83.
- Jazar, R.N. (2013). Advanced vibrations. Springer. Kecik, K., Smagala, A., and Liubytska, K. (2022). Ball bearing fault diagnosis using recurrence analysis. Materials, 15, 5940. doi:10.3390/ma15175940.
- Majewski, T. (2017). VIBRACIONES EN SISTEMAS FÍSICOS. Marwan, N. (2008). A historical review of recurrence plots. Eur. Phys. J. Special Topics, 164, 3–12. doi:10.1140/epjst/e2008-00829-1. URL https://doi.org/10.1140/epjst/e2008-00829-1.
- Marwan, N., Carmen Romano, M., Thiel, M., and Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5), 237–329. doi: https://doi.org/10.1016/j.physrep.2006.11.001.
- Marwan, N. and Webber Jr, C.L. (2014). Mathematical and computational foundations of recurrence quantifications. In Recurrence quantification analysis: Theory and best practices, 3–43. Springer.
- Pilario, K.E.S., Cao, Y., and Shafiee, M. (2019). Incipient fault detection, diagnosis, and prognosis using canonical variate dissimilarity analysis. In A.A. Kiss, E. Zondervan, R. Lakerveld, and L. ¨Ozkan (eds.), 29th European Symposium on Computer Aided Process Engineering, volume 46 of Computer Aided Chemical Engineering, 1195–1200. Elsevier. doi:https://doi.org/10.1016/B978-0-12-818634-3.50200-9.
- Rysak, A., Sedlmayr, M., and Gregorczyk, M. (2022). Revealing fractionality in the r¨ossler system by recurrence quantification analysis. The European Physical Journal Special Topics, 232, 1–16. doi:10.1140/epjs/s11734-022-00740-1.
- Samy, I. and Gu, D.W. (2011). Fault Detection and Flight Data Measurement, volume 419. Springer Berlin, Heidelberg. doi:10.1007/978-3-642-24052-2.
- Schinkel, S., Dimigen, O., and Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164, 15–53. doi:10.1140/epjst/e2008-00833-5.
- Suresha, S., Sujith, R., Emerson, B., and Lieuwen, T. (2016). Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter. Physical Review E, 94. doi: 10.1103/PhysRevE.94.042206.
- Syta, A., Jonak, J., Jedli´nski, , and Litak, G. (2012). Failure diagnosis of a gear box by recurrences. Journal of Vibration and Acoustics, 134. doi:10.1115/1.4005846.
- Szymiec, T.M. (2016). Vibraciones En Sistemas Físicos. ALFAOMEGA, 1 edition.
- Wang, W., Huang, B., Zhou, Z., and Du, J. (2021). Wear mechanism and failure analysis of a high-speed train hydraulic damper using cfd approach. Journal of Physics: Conference Series, 1877, 012006. doi:10.1088/1742-6596/1877/1/012006. Webber, C. (2015).

