Marcos A. González-Olvera | Universidad Autónoma de la Ciudad de México |
Ana G. Gallardo-Hernández | Instituto Mexicano del Seguro Social |
Jesica Escobar | Instituto Mexicano del Seguro Social |
https://doi.org/10.58571/CNCA.AMCA.2022.049
Resumen: Coronary disease modeling and prevention has proven critical to medical applications and patient evaluation. In this work, a robust observer for a fractional-order Muscular Blood Vessel (MBV) model that, using only measurements from the change in pressure, is proposed so it can reconstruct the change in the inner radius of the vessel. With this application, it is expected to provide a better prediction of future or present problems in the MBV. Parametric linear and nonlinear reconstruction, as well as state observation, is considered with noisy measurement cases. Numeric results are presented to demonstrate the capabilities of the proposed method.
¿Cómo citar?
González-Olvera, M., Gallardo-Hernández, A. & Escobar, J. Robust Adaptive Observer for a Muscular Blood Vessel Fractional-Order Model. Memorias del Congreso Nacional de Control Automático, pp. 368-373, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.049
Palabras clave
Sistemas Caóticos; Sistemas Biomédicos; Modelado e Identificación de Sistemas
Referencias
- Aghababa, M.P. and Borjkhani, M. (2014). Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme. Complexity, 20, 37–46. doi:10.1002/cplx.21502.
- Balachandran, K., Govindaraj, V., Rivero, M., Tenreiro Machado, J.A., and Trujillo, J.J. (2013). Observability of nonlinear fractional dynamical systems. Abstract and Applied Analysis, 2013(2). doi:10.1155/2013/346041.
- Craiem, D. and Armentano, R.L. (2007). A fractional derivative model to describe arterial viscoelasticity. Biorheology, 44(4), 251–263.
- Djordjevi´c, V.D., Jari´c, J., Fabry, B., Fredberg, J.J., and Stamenovi´c, D. (2003). Fractional derivatives embody essential features of cell rheological behavior. Annals of biomedical engineering, 31(6), 692–699.
- Eckert, M., Nagatou, K., Rey, F., Stark, O., and Hohmann, S. (2019). Solution of time-variant fractional differential equations with a generalized peano-baker series. IEEE Control Systems Letters, 3(1), 79–84. doi:10.1109/LCSYS.2018.2852600.
- Escobar, J., Gallardo-Hernandez, A.G., and Gonzalez-Olvera, M.A. (2022). How to deal with parameter estimation in continuous-time stochastic systems. Circuits, Systems, and Signal Processing, 41(4), 2338–2357.
- Gong, C., Li, Y., and Sun, X. (2006). Backstepping control of synchronization for biomathematical model of muscular blood vessel. Journal of Applied Sciences, 24(6), 604–607.
- González-Olvera, M.A., Flores-Pérez, A., and Torres, L. (2021). Adaptive observer design for the fractionalorder hindmarsh-rose neuron model. Asociación de México de Control Automático.
- González-Olvera, M.A. and Tang, Y. (2018). Adaptive observer for a class of nonlinear fractional-order systems. In Congreso Nacional de Control Automático 2018. Asociación de México de Control Automático.
- González-Olvera, M.A., Tang, Y., and Navarro-Guerrero, G. (2015). Fractional order system identification by a genetic algorithm. In Memorias del Congreso Nacional de Control Automático, 304–308.
- Griffith, T. and Edwards, D.H. (1994). Fractal análisis of role of smooth muscle ca2+ fluxes in genesis of chaotic arterial pressure oscillations. American Journal of Physiology-Heart and Circulatory Physiology, 266(5), H1801–H1811.
- Lin, C.J., Yang, S.K., and Yau, H.T. (2012). Chaos suppression control of a coronary artery system with uncertainties by using variable structure control. Computers & Mathematics with Applications, 64(5), 988–995. doi:https://doi.org/10.1016/ j.camwa.2012.03.007. URL https://www.sciencedirect.com/science/article/pii/ S089812211200212X. Advanced Technologies in Computer, Consumer and Control.
- Magin, R.L. (2010). Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications, 59(5), 1586–1593. doi:https://doi.org/10.1016/j.camwa.2009.08.039. Fractional Differentiation and Its Applications.
- Mendes, E.M., Salgado, G.H., and Aguirre, L.A. (2019). Numerical solution of caputo fractional differential equations with infinity memory effect at initial condition. Communications in Nonlinear Science and Numerical Simulation, 69, 237–247.
- N’Doye, I., Laleg-Kirati, T.M., Darouach, M., and Voos, H. (2017). H1 Adaptive observer for nonlinear fractional-order systems. International Journal of Adaptive Control and Signal Processing, 31(3), 314–331. doi:10.1002/acs.2699. URL http://doi.wiley.com/10.1002/acs.2699.
- N’Doye, I., Zasadzinski, M., Darouach, M., and Radhy, N.E. (2009). Observer-based control for fractionalorder continuous-time systems. Proceedings of the IEEE Conference on Decision and Control, (1), 1932–1937. doi:10.1109/CDC.2009.5400443.
- Rihan, F.A. (2013). Numerical modeling of fractionalorder biological systems. In Abstract and Applied Analysis, volume 2013. Hindawi.
- Sabatier, J., Aoun, M., Oustaloup, A., Gregoire, G., Ragot, F., and Roy, P. (2006). Fractional System identification for lead acid battery state of charge estimation. Signal Processing, 86(10), 2645–2657. doi:https://doi.org/10.1016/j.sigpro.2006.02.030. URL https://www.sciencedirect.com/science/article/pii/S0165168406000533. Special Section: Fractional Calculus Applications in Signals and Systems.
- Sabatier, J., Farges, C., and Trigeassou, J.C. (2014). Fractional systems state space description: Some wrong ideas and proposed solutions. JVC/Journal of Vibration and Control, 20(7), 1076–1084. doi:10.1177/1077546313481839.
- Sheng, D., Wei, Y., Cheng, S., and Wang, Y. (2018). Observer-based adaptive backstepping control for fractional order systems with input saturation. ISA Transactions, 82, 18–29. oi:10.1016/j.isatra.2017.06.021. URL http://dx.doi.org/10.1016/j.isatra.2017.06.021.
- Solís -Pérez, J., Gómez-Aguilar, J., Torres, L., Escobar- Jiménez, R., and Reyes-Reyes, J. (2019). Fitting of experimental data using a fractional kalman-like observer. ISA transactions, 88, 153–169.
- Sun, Y.,Wang, Y.,Wu, X., and Hu, Y. (2018). Robust extended fractional kalman filter for nonlinear fractional system with missing measurements. Journal of the Franklin Institute, 355(1), 361–380.
- Tepljakov, A., Petlenkov, E., and Belikov, J. (2011). Fomcom: a matlab toolbox for fractional-order System identification and control. International Journal of Microelectronics and computer science, 2(2), 51–62.
- Trigeassou, J.C., Maamri, N., Sabatier, J., and Oustaloup, A. (2012). State variables and transients of fractional order differential systems. Computers and Mathematics with Applications, 64(10), 3117–3140. doi:10.1016/j.camwa.2012.03.099. URL http://dx.doi.org/10.1016/j.camwa.2012.03.099.
- Virani, S.S., Alonso, A., Benjamin, E.J., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Delling, F.N., et al. (2020). Heart disease and stroke statistics—2020 update: a report from the american heart association. Circulation, 141(9), e139–e596.
- Wei, Y.H., Sun, Z.Y., Hu, Y.S., and Wang, Y. (2015). On fractional order adaptive observer. International Journal of Automation and Computing, 12(6), 664–670. doi:10.1007/s11633-015-0929-3. URL http://link.springer.com/10.1007/s11633-015-0929-3.
- Zhang, R. and Gong, J. (2014). Synchronization of the fractional-order chaotic system via adaptive observer. Systems Science and Control Engineering, 2(1), 751–754. doi:10.1080/21642583.2014.891955.