G. Becerra | Universidad Autónoma del Estado de Quintana Roo |
J.D. Avilés | Universidad Autónoma de Baja California |
E. Torres | CONAHCYT – UAEQROO |
J. O. Aguilar | Universidad Autónoma del Estado de Quintana Roo |
J. Vazquez | Universidad Autónoma de Baja California |
F. Chan | Universidad Autónoma del Estado de Quintana Roo |
https://doi.org/10.58571/CNCA.AMCA.2023.048
Resumen: This work presents a comparison of two control algorithms for the model of a nonlinear converter system used as a virtual synchronous generator (VSG). The converter connects between the electrical grid and an intermittent renewable system, such as photovoltaic or wind, with backup for sudden disturbances in electricity generation. The proposal of the VSG arises from the fact that, on one hand, the conventional generation system consists of large power plants such as combined-cycle power plants that employ generators and turbines with significant physical inertia. On the other hand, when connecting renewable systems such as wind and solar, which use converters to integrate with the grid, they lack physical inertia. It is necessary to couple this inertia to the system in order to compensate for the disturbances of intermittent systems and thereby maintain the frequency of the electrical power network. It should be clarified that physical inertia is not available when renewable systems such as wind or photovoltaic are connected. Recent studies have shown that it is possible to compensate for the disturbance caused by this lack of inertia through a backup system and the virtual synchronous generator (power converter) using control algorithms. In this work, linearization and super twisting algorithms are employed for handling disturbances, and the main differences between the algorithms are demonstrated when facing sudden changes in active or reactive power.
¿Cómo citar?
G. Becerra, E. Torres, J. O. Aguilar, J.D. Avilés, J. Vazquez & F. Chan. Robust Control Algorithm for Virtual Synchronous Generator in Intermittent Generation. Memorias del Congreso Nacional de Control Automático, pp. 211-216, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.048
Palabras clave
Control Robusto; Control de Sistemas No Lineales; Control Discontinuo (modos deslizantes)
Referencias
- Aguirre, F., Becerra, G., Aviles, J., Benitez, M., Aguilar, J., y Vazquez, J. (2022). Comparison of control algorithms for a pmsm electrical machine. In Memorias del Congreso Nacional de Control Automatico, 416-420. doi:10.58571/CNCA.AMCA.2022.063.
- Alcala, J. (2011). Estudio de Convertidores Back to Back. Phd. tesis, Universidad Autonoma de San Luis Potosi. cfe, M. (2023). Hidroelectricas, energia limpia y confiable para la poblacion. Consultado el 14 de mayo de 2023. URL https://app.cfe.mx/Aplicaciones/OTROS/Boletines/boletin?i=2482.
- Chen, W., Liu, B., Nazir, M.S., Abdalla, A.N., Mohamed, M.A., Ding, Z., Bhutta, M.S., y Gul, M.
- (2022). An energy storage assessment: Using frequency modulation approach to capture optimal coordination. Sustainability, 14(14). URL https://www.mdpi.com/2071-1050/14/14/8510.
- Chen, Y., Lin, C., Bao, Z., y Zhao, X. (2019). Modified super-twisting algorithm with an antiwindup coefficient adopted in pmsm speed loop control. Energy Procedia, 158(1), 2637-2642. doi:10.1016/j.egypro.2019.02.015.
- De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., y Belmans, R. (2007). A voltage and frequency droop control method for parallel inverters. IEEE Transactions on Power Electronics, 22(4), 1107-1115. doi:10.1109/TPEL.2007.900456.
- Gonzalez, T., Moreno, J.A., y Fridman, L. (2012). Variable gain super-twisting sliding mode control. IEEE Transactions on Automatic Control, 57(8), 2100-2105. doi:10.1109/TAC.2011.2179878.
- Guzman, E., Becerra, G., Alvarez-Icaza, L., y Moreno, J. (2014). Controladores para motores diesel con incertidumbres parametricas. In Memorias del XVI Congreso Latinoamericano de Control Automatico, 965-970.
- Holmes, D.G. y Lipo, T.A. (2003). Pulse width modulation for power converters – principles and practice. IEEE Series on Power Engineering, 1(1), 14-17. doi:10.1109/63.712278.
- Komurcugil, H. y Kukrer, O. (1998). Lyapunov-based control for three-phase pwm ac/dc voltage-source converters. IEEE Transactions on Power Electronics, 13(5), 801-813. doi:10.1109/63.712278.
- Li, Z., Jiao, X., y Zhang, T. (2023). Robust h inf; output feedback trajectory tracking control for steerby- wire four-wheel independent actuated electric vehicles. World Electric Vehicle Journal, 14(6). doi:10.3390/wevj14060147.
- Mehrasa, M., Pouresmaeil, E., Soltani, H., Blaabjerg, F., Calado, M.R.A., y Catal˜ao, J.P.S. (2019). Virtual inertia and mechanical power-based control strategy to provide stable grid operation under high renewables penetration. Applied Sciences, 9(6). doi:10.3390/app9061043.
- Moreno, J.A. y Osorio, M. (2012). Strict lyapunov functions for the super-twisting algorithm. IEEE Transac- tions on Automatic Control, 57(4), 1035-1040. doi:10.1109/TAC.2012.2186179.
- Mullane, A. y O’Malley, M. (2005). The inertial response of induction-machine-based wind turbines. IEEE Transactions on Power Systems, 20(3), 1496-1503. doi:10.1109/TPWRS.2005.852081.
- Rakhshani, E. y Rodr´ıguez, P. (2017). Inertia emulationin ac/dc interconnected power systems using derivative technique considering frequency measurement effects. IEEE Transactions on Power Systems, 32(5), 3338-3351. doi:10.1109/TPWRS.2016.2644698.
- Sami, I., Ullah, S., Ullah, S., Bukhari, S.S.H., Ahmed, N., Salman, M., y Ro, J.S. (2023). A non-integer high-order sliding mode control of induction motor with machine learning-based speed observer. Machines, 11(6). doi:10.3390/machines11060584.
- SENER, M. (2023). Balance nacional de energía 2021. Consultado el 14 de mayo de 2023.
- Vetoshkin, L. y Müller, Z. (2021). A comparative análisis of a power system stability with virtual inertia. Energies, 14(11). doi:10.3390/en14113277.
- Visscher, K. y De Haan, S. (2008). Virtual synchronous machines (vsg’s) for frequency stabilisation in future grids with a significant share of decentralized generation. In CIRED Seminar 2008: SmartGrids for Distribution, 1-4.
- Zhong, Q.C. y Weiss, G. (2011). Synchronverters: Inverters that mimic synchronous generators. IEEE Transactions on Industrial Electronics, 58(4), 1259-1267. doi:10.1109/TIE.2010.2048839.
- Zsiboracs, H., Baranyai, N.H., Vincze, A., Zentko, L., Birkner, Z., Mate, K., y Pint´er, G. (2019). Intermittent renewable energy sources: The role of energy storage in the european power system of 2040. Electronics, 8(7). doi:10.3390/electronics8070729.