Añorve Jimenez, Luis Bernardo | CIDETEC-Instituto Politécnico Nacional |
Salgado, Ivan | UPIBI-Instituto Politécnico Nacional |
Mera, Manuel | Tecnológico Nacional de México/I.T. La Laguna |
Cruz Ortiz, David | UPIITA-Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2023.057
Resumen: This work proposes the design of a robust time-varying controller for the perturbed kinematic model of the unicycle mobile robot. The controller is based on composite Lyapunov functions applied in time-varying linear systems. The methodology ensures the stability of the tracking error despite the presence of multiplicative disturbances in the control channel. The synthesis of the proposed controller requires the solution of a set of off-line Linear Matrix Inequalities and the solution of an optimization process regarding the composite Lyapunov approach. Simulation results show the feasibility of the proposed strategy against classical controllers.
¿Cómo citar?
Añorve Jimenez, Luis Bernardo; Salgado, Ivan; Mera, Manuel; Ríos, Héctor; Cruz Ortiz, David. Robust Control Design for the Unicycle Mobile Robot Based on Composite Lyapunov Functions. Memorias del Congreso Nacional de Control Automático, pp. 455-460, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.057
Palabras clave
Control de Sistemas No Lineales; Control Robusto; Robótica y Mecatrónica
Referencias
- Das, T. y Kar, I.N. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, 14(3), 501-510.
- De Luca, A., Oriolo, G., y Samson, C. (2005). Feedback control of a nonholonomic car-like robot. Robot motion planning and control, 171-253.
- D´ıaz, Y., D´avila, J., y Mera, M. (2022). Leader-follower formation of unicycle mobile robots using sliding mode control. IEEE Control Systems Letters, 7, 883-888.
- Guti´errez, A., Mera, M., y R´ıos, H. (2022). An integral sliding–mode robust regulation for constrained three wheeled omnidirectional mobile robots. In 2022 IEEE 61st Conference on Decision and Control (CDC), 3637-3642. IEEE.
- Hichri, B., Gallala, A., Giovannini, F., y Kedziora, S. (2022). Mobile robots path planning and mobile multirobots control: A review. Robotica, 1-14.
- Hu, T. y Lin, Z. (2003). Composite quadratic lyapunov functions for constrained control systems. IEEE Transactions on Automatic Control, 48(3), 440-450.
- Hu, T. y Lin, Z. (2004). Properties of the composite quadratic lyapunov functions. IEEE Transactions on Automatic Control, 49(7), 1162-1167.
- Maghenem, M., Lor´ıa, A., y Panteley, E. (2017). Formation-tracking control of autonomous vehicles under relaxed persistency of excitation conditions. IEEE Transactions on Control Systems Technology, 26(5), 1860-1865.
- Martinez, E.A., Rios, H., y Mera, M. (2021). Robust tracking control design for unicycle mobile robots with input saturation. Control Engineering Practice, 107, 104676.
- Mera, M., Rios, H., y Martinez, E.A. (2020). A slidingmode based controller for trajectory tracking of perturbed unicycle mobile robots. Control Engineering Practice, 102, 104548.
- Moudoud, B., Aissaoui, H., y Diany, M. (2022). Extended state observer-based finite-time adaptive sliding mode control for wheeled mobile robot. Journal of Control and Decision, 9(4), 465-476.
- Patle, B., Pandey, A., Parhi, D., Jagadeesh, A., et al. (2019). A review: On path planning strategies for navigation of mobile robot. Defence Technology, 15(4), 582-606.
- Pourboghrat, F. (2002). Exponential stabilization of nonholonomic mobile robots. Computers & Electrical Engineering, 28(5), 349-359.
- Pourboghrat, F. y Karlsson, M.P. (2002). Adaptive control of dynamic mobile robots with nonholonomic constraints. Computers & Electrical Engineering, 28(4), 241-253.
- Rochel, P., R´ıos, H., Mera, M., y Dzul, A. (2022). Trajectory tracking for uncertain unicycle mobile robots: A super-twisting approach. Control Engineering Practice, 122, 105078.
- Rubio, F., Valero, F., y Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 1729881419839596.
- Soukkou, Y., Tadjine, M., Soukkou, A., Nibouche, M., y Nouri, H. (2023). Tuning functions based adaptive backstepping control for uncertain strict-feedback nonlinear systems using barrier lyapunov functions with full state constraints. European Journal of Control, 70, 100783.
- Tiriolo, C. y Lucia, W. (2022). On the design of control invariant regions for feedback linearized car-like vehicles. IEEE Control Systems Letters, 7, 739-744.
- Tzafestas, S.G. (2018). Mobile robot control and navigation: A global overview. Journal of Intelligent & Robotic Systems, 91, 35-58.
- Wu, Y., Wang, Y., y Fang, H. (2022). Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics. ISA transactions, 125, 22-30.