Franco-Jaramillo, José Roberto | TECNM/ Instituto Tecnológico De La Laguna |
Ríos, Héctor | CONACYT – TECNM/Instituto Tecnológico De La Laguna |
Ferreira de Loza, Alejandra | IPN |
Efimov, Denis | INRIA |
Cassany, Louis | Université De Bordeaux |
Gucik-Derigny, David | Université De Bordeaux |
Cieslak, Jérôme | Université De Bordeaux |
Henry, David | Université De Bordeaux |
Resumen: In this paper, a robust nonlinear model reference adaptive controller is proposed to solve the problem of blood glucose regulation for critically ill patients affected by type 1 diabetes mellitus. The proposed method considers blood glucose measurement and insulin infusion via intravenous. The proposed scheme copes with external disturbances such as food intake, unmodeled dynamics, and parameter uncertainties given by the interpatient variability. The algorithm can regulate asymptotically the blood glucose to the basal glucose level. The approach is validated in the UVA/Padova metabolic simulator for 10 in silico adult patients without meal advertisement. Minimal risks of hyperglycemia and hypoglycemia are achieved.
¿Cómo citar?
R. Franco, H. Rios, A. Ferreira de Loza, D. Efimov, L. Cassany, D. Gucik-Derigny J. Cieslak & D. Henry. Robust Model Reference Adaptive Control for an Insulin-Glucose Model. Memorias del Congreso Nacional de Control Automático, pp. 154-159, 2021.
Palabras clave
Type 1 Diabetes Mellitus, Blood Glucose Regulation, Adaptive Control
Referencias
- Ashley, B. and Liu, W. (2017). Asymptotic tracking and disturbance rejection of the blood glucose regulation system. Mathematical Biosciences, 289, 78–88.
- Bergman, R., Phillips, L., and Cobelli, C. (1981). Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and betacell glucose sensitivity from the response to intravenous glucose. Journal of Clinical Investigation, 68, 1456– 1467.
- Boiroux, D., Dunn, A., Schmidt, S., Norgaard, K., Poulsen, N., Madsen, H., and Bagterp, J. (2017). Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Engineering Practice, 58, 332–342.
- Dansa, M., Pereira, V., and Oliveira, T. (2018). Blood glucose regulation through bihormonal non-singular terminal sliding mode controller. In 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), 474–479. Singapore.
- Ferdinando, M., Pepe, P., Palumbo, P., Panunzi, S., and Gaetano, A. (2020). Semiglobal sampled-data dynamic output feedback controller for the glucose insulin system. IEEE Transactions on Control Systems Technology, 28, 16–32.
- Franco, R., Ferreira de Loza, A., Ríos, H., Cassany, L., Guckik-Derigny, D., Cieslak, J., Henry, D., and Olcomendy, L. (2020). Output-feedback sliding-mode controller for blood glucose regulation in critically ill patients affected by type 1 diabetes. IEEE Transactions on Control Systems Technology. DOI: 10.1109/TCST.2020.3046420.
- Franco, R., Ríos, H., Ferreira de Loza, A., and Efimov, D. (2021). A robust nonlinear model reference adaptive control for disturbed linear systems: An LMI approach. IEEE Transactions on Automatic Control. DOI: 10.1109/TAC.2021.3069719.
- Gallardo, A., Fridman, L., Levant, A., Shtessel, Y., Leder, R., Monsalve, C., and Islas, S. (2013). High-order sliding-mode control for blood glucose: Practical relative degree approach. Control Engineering Practice, 21, 747–758.
- Incremona, G., Messori, M., Toffanin, C., Cobelli, C., and Magni, L. (2018). Model predictive control with integral action for artificial pancreas. Control Engineering Practice, 77, 86–94.
- Kovács, L. (2017). Linear parameter varying (LPV) based robust control of type-1 diabetes driven for real patient data. Knowledge-Based Systems, 122, 199–213.
- Levant, A. (2003). High-order sliding modes: differentiation and output-feedback control. International Journal of Control, 76(9-10), 924–941.
- Magni, L. (2008). Evaluating the efficacy of closed-loop glucose regulation via control variability grid analysis. Journal of Diabetes and Science Technology, 2, 630– 655.
- Man, C., Micheletto, F., Breton, D., Kovatchev, B., and Cobelli, C. (2014). The UVA/PADOVA type 1 diabetes simulator: New features. Journal of Diabetes and Science Technology, 8, 26–34.
- Messori, M., Kropff, J., Favero, S., Place, J., Visentin, R., Calore, R., Toffanin, C., Palma, F., Lanzola, G., Farret, A., Boscari, F., Galasso, S., Avogaro, A., Keith, P., Kovatchev, B., Bruttomesso, D., Magni, L., DeVries, J., Renard, E., and Cobelli, C. (2017). Individually adaptive artificial pancreas in subjects with type 1 diabetes: A one-month proof-of-concept trial in freeliving conditions. Diabetes Technology & Therapeutics, 10, 1–12.
- Mirzaee, A., Deghani, M., and Mohammadi, M. (2020). Robust LPV control design for blood glucose regulation considering daily life factors. Biomedical Signal Processing and Control, 57, 101830.
- Oruklu, M., Cinar, A., Quinn, L., and Smith, D. (2009). Adaptive control strategy for regulation of blood glucose levels in patientswith type 1 diabetes. Journal of Process Control, 19, 1333–1346.
- Turksoy, K., Quinn, L., Littlejohn, E., and Cinar, A. (2014). Multivariable adaptive identification and control for artificial pancreas systems. IEEE Transactions on Biomedical Engineering, 61, 883–891.