López, Mauro | Univ. Nacional Autonoma De Mexico |
Arteaga, Marco A. | Univ. Nacional Autonoma De Mexico |
Nuño, Emmanuel | Univ. of Guadalajara |
Pliego Jimenez, Javier | Univ. Nacional Autonoma De Mexico |
Ortíz Espinoza, Amalinalli Alethia | Univ. Nacional Autonoma De Mexico |
Resumen: Most robust control schemes for rigid robots assume velocities measurements to be available. A solution to this problem is by using tachometers, however, this can increase the cost and the velocities signals obtained can be contaminated with noise. These facts motivates us to design a control and observer scheme to solve the tracking position problem without measurement of velocities joints of a manipulator robot. This work presents a robust control scheme designed in conjunction with an observer for rigid robots. Additionally, the control scheme does not need to know the dynamic model of the manipulator. Particular emphasis is placed on the experimental results, which validate the proposed control algorithm.
¿Cómo citar?
Mauro López, Javier Pliego, Marco Arteaga, Emmanuel Nuño & Amalinalli Ortíz. Robust Output Feedback Control for Robot Manipulators. Memorias del Congreso Nacional de Control Automático, pp. 249-253, 2018.
Palabras clave
Observer, robust control
Referencias
- Arteaga-Pérez, M. (2003). Robot control and parameter estimation with only joint position measurements. Automatica, 39(1), 67–73.
- Arteaga-Pérez, M.A., Castillo-Sánchez, A.M., and Parra Vega, V. (2006). Cartesian control of robots without dynamic model and observer design. Automatica, 42, 473–480.
- Bartolini, G., Pisano, A., Punta, E., and Usai, E. (2003). A survey of applications of second-order sliding mode control to mechanical systems. International Journal of Control, 76(9-10), 875–892.
- Berghuis, H. and Nijmeijer, H. (1994). Robust control of robots via linear estimated state feedback. IEEE Transactions on Automatic Control, 39(20), 2159–2162.
- Canudas de Wit, C. and Fixot, N. (1991). Robot control via robust estimated state feedback. IEEE Transactions on Automatic Control, 36(12), 1497–1501.
- Fridman, L. (2011). Sliding Mode Enforcement after 1990: Main Results and Some Open Problems, volume 412 of Lecture Notes in Control and Information Sciences. Springer-Verlang.
- Galicki, M. (2008). An adaptive regulator of robotic manipulators in the task space. IEEE Transactions on Automatic Control, 53(4), 1058–1062.
- Kelly, R., Santibáñez, V., and Loria, A. (2005). Control of robot manipulators in joint space. Advanced textbooks in control and signal processing. Springer–Verlag.
- Levant, A. (2005). Quasi-continuous high-order slidingmode controllers. IEEE Transactions on Automatic Control, 50(11), 1812–1816.
- Moreno, J. and Osorio, M. (2008). A lyapunov approach to second-order sliding mode controllers and observers. IEEE Conference on Decision and Control, 2856–2861.
- Moreno, J. and Osorio, M. (2012). Strict lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4), 1035–1040.
- Nicosia, S. and Tomei, P. (1990). Robot control by using only loint position measurements. IEEE Transactions on Automatic Control, 35(9), 1058–1061.
- Parra-Vega, V., Arimoto, S., Liu, Y., Hirzinger, G., and Akella, P. (2003). Dynamic sliding pid control for tracking of robot manipulators: theory and experiments. IEEE Transactions on Robotics and Automation, 19(6), 967–976.
- Slotine, J.J.E. and Li, W. (1987). On the adaptive control of robot manipulators. International Journal of Robotics Research, 6(3), 49–59.
- Spong, M.W. (1992). On the robust control of robot manipulators. IEEE Transactions on Automatic Control, 37(11), 1782–1786.
- Zhang, F., Dawson, D., de Queiroz, M., and Dixon, W. (2000). Global adaptive output feedback tracking control of robot manipulators. IEEE Transactions on Automatic Control, 45(6), 1203–1208.