Blanca Leticia Hernández-Galván | Universidad Iberoamericana |
Guillermo Fernandez-Anaya | Universidad Iberoamericana |
Jesus Rogelio Pulido Luna | TecNM/Instituto Tecnologico de Tijuana |
Nohe R. Cazarez-Castro | TecNM/Instituto Tecnologico de Tijuana |
Jorge Antonio López Rentería | CONACyT-TecNM/Instituto Tecnologico de Tijuana |
Resumen: The aim of this work is to give a method to connect a set of polynomials having all of their roots inside the stability zone for fractional difference systems with the fractional discrete operator of Caputo. Due to the complexity of the stability zone, it is necessary to use its explicit description to build a polynomial family with zeros belonging the described zone. Such a construction of the polynomial family will be based on the connection of their zeros. Moreover, the applicability is shown with the design of a robust stabilizing controller, which is illustrated by stabilizing the fractional discrete Duffing’s oscillator.
¿Cómo citar?
Blanca Leticia Hernández-Galván, Jorge Antonio López Rentería, Nohe R. Cazarez-Castro & Guillermo Fernandez-Anaya. Sα-Connectivity For Fractional Difference Caputo’s Type Systems. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
Fractional Systems, Systems with time delays, Linear systems, Robust control (linear case), Polynomial methods, Linear parameter-varying systems, Robust time-delay systems
Referencias
- (2005). LMI Tools for Stability Analysis of Fractional Systems, volume Volume 6: 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach, California, USA. doi:10.1115/DETC2005-85182.
- A.A. Kilbas and H.M. Srivastava and J.J. Trujillo (2006). Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). Elsevier Science Inc., USA.
- B. Senol and C. Yeroglu (2012). Robust Stability Analysis of Fractional Order Uncertain Polynomials. In Proceedings of the 5th IFAC Workshop on Fractional Differentiation and its Applications, 1 – 6. Nanjing, China.
- Bus lOwicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, 19(2), 263–269.
- Bus lowicz, M (2010). Robust stability of positive discretetime linear systems of fractional order. Bulletin of the Polish Academy of Sciences: Technical Sciences, 567– 572.
- Cermak, J., Gyori, I., and Nechvatal, L. (2015). On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal., 18(2), 651–672. doi:10.1515/fca-2015-0040.
- Christopher Goodrich and Allan C. Peterson (2015). Discrete fractional calculus. Springer Int. Pub., Switzerland. doi:10.1007/978-3-319-25562-0.
- D. Matignon (1996). Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications, volume 2, 963–968. Lille, France.
- D. Matignon (1998). Stability properties for generalized fractional differential systems. In ESAIM: proceedings, volume 5, 145–158. EDP Sciences.
- F. Mainardi (1997). Fractional calculus: Some Basic Problems in Continuum and Statistical Mechanics. In Fractals and fractional calculus in continuum mechanics, 291–348. Springer.
- Farges, C., Moze, M., and Sabatier, J. (2010). Pseudostate feedback stabilization of commensurate fractional order systems. Automatica, 46(10), 1730 – 1734. doi: https://doi.org/10.1016/j.automatica.2010.06.038.
- I. Petrás (2011). Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, Berlin, Heidelberg. doi:https://doi.org/10.1007/978-3-642-18101-6.
- I. Podlubny (1999). Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198. Academic Press, San Diego, Calif, USA.
- J.A. López-Rentería and B. Aguirre-Hernández and G. Fernández-Anaya (2019). LMI stability test for fractional order initialized control systems. Applied and computational mathematics, 18(1), 50 – 61. J.A.
- López-Rentería and B. Aguirre-Hernández and F. Verduzco (2017). Stable polynomial curves and some properties with application in control. Bolet´ın de la Sociedad Matemática Mexicana, 23(2), 869 – 889. doi: 10.1007/s40590-016-0086-x.
- López-Rentería, J. and Fernández-Anaya, G. (2016). Robust stability by path-connectivity of fractional order polynomials. Actas Applicandae Mathematicae, 145, 1– 14. doi:https://doi.org/10.1007/s10440-016-0047-4.
- R. Caponetto and G. Dongola and L. Fortuna and I. Petras (2010). Fractional Order Systems. WORLD SCIENTIFIC. doi:10.1142/7709.
- Rafal Stanislawski and Krzysztof J. Latawiec (2013a). Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability. Bulletin of The Polish Academy of Sciences-technical Sciences, 61, 353–361.
- Rafal Stanislawski and Krzysztof J. Latawiec (2013b). Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems. Bulletin of The Polish Academy of Sciences-technical Sciences, 61, 363–370.
- Shantanu Das (2011). Functional Fractional Calculus. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3- 642-20545-3.
- T. Kaczorek (2008). Practical stability of positive fractional discrete-time linear systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, 56(4), 313–317.
- Tan, N., Ozguven], O.F., and Ozyetkin, M.M. (2009). Robust stability analysis of fractional order interval polynomials. ISA Transactions, 48(2), 166 – 172. doi: https://doi.org/10.1016/j.isatra.2009.01.002.