Gutiérrez, Ariana | Tecnológico Nacional de México, La Laguna |
Ríos, Héctor | Tecnológico Nacional de México, La Laguna |
Mera, Manuel | Instituto Politécnico Nacional |
Efimov, Denis | Université de Lille |
Ushirobira, Rosane | Université de Lille |
https://doi.org/10.58571/CNCA.AMCA.2024.079
Resumen: The aim of this paper is to design a sampled robust controller for the trajectory tracking problem in constrained unicycle mobile robots. The proposed swithched controller is composed by an aperiodic control law and a periodic control law. The aperiodic control consists on an state–feedback–based event–triggered control wich is designed by means of the attractive ellipsoid method and the barrier Lyapunov function. The periodic sampled control part is designed taking into account a maximum sampling time. A safe set where the state constraints are not violated, and a switching set that determines the region where each part of the controller is active are provided. The proposed strategy guarantees the input–to–state stability of the tracking error dynamics with respect to external disturbances. The feasibility of the proposed approach is demonstrated through simulation results.
¿Cómo citar?
Gutiérrez, A., Ríos, H., Mera, M., Efimov, D. & Ushirobira, R. (2024). Sampled Robust Control for Constrained Unicycle Mobile Robots. Memorias del Congreso Nacional de Control Automático 2024, pp. 463-468. https://doi.org/10.58571/CNCA.AMCA.2024.079
Palabras clave
Unicycle Mobile Robots; Sampled Control; State Constraints
Referencias
- Chen, X., Jia, Y., and Matsuno, F. (2014). Tracking control for differential-drive mobile robots with diamond-shaped input constraints. IEEE Transactions on Control Systems Technology, 22(5), 1999–2006.
- Dai, S.L., Lu, K., and Jin, X. (2021). Fixed time formation control of unicycle-type mobile robots with visibility and performance constraints. IEEE Transactions on Industrial Electronics, 68(12), 12615–12625.
- Huang, J., Wang, W., Wen, C., and Li, G. (2019). Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering. IEEE Transactions on Automatic Control, 65(1), 318–324.
- Ke, F., Li, Z., and Yang, C. (2017). Robust tube-based predictive control for visual servoing of constrained differential-drive mobile robots. IEEE Transactions on Industrial Electronics, 65(4), 3437–3446.
- Khaledyan, M., Liu, T., Fernandez-Kim, V., and de Queiroz, M. (2015). Flocking and target interception control for formations of nonholonomic kinematic agents. IEEE Transactions on Control Systems Technology, 28(4), 1603–1610.
- Liu, T. and Jiang, Z.P. (2015). A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Transactions on Automatic Control, 60(8), 2072–2085.
- Nagy, A.M., Mourot, G., Marx, B., Ragot, J., and Schutz, G. (2010). Systematic multimodeling methodology applied to an activated sludge reactor model. Industrial & Engineering Chemistry Research, 49(6), 2790–2799.
- Postoyan, R., Bragagnolo, M.C., Galbrun, E., Daafouz, J., Nešić, D., and Castelan, E.B. (2015). Event-triggered tracking control of unicycle mobile robots. Automatica, 52, 302–308.
- Sun, Z., Dai, L., Liu, K., Xia, Y., and Johansson, K.H. (2018). Robust MPC for tracking constrained unicycle robots with additive disturbances. Automatica, 90, 172–184.
- Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic control, 52(9), 1680–1685.
- Tarbouriech, S., Garcia, G., da Silva Jr, J.M., and Queinnec, I. (2011). Stability and stabilization of linear systems with saturating actuators. Springer Science & Business Media.
- Tee, K.P., Ge, S.S., and Tay, E.H. (2009). Barrier Lyapunov functions for the control of outputconstrained nonlinear systems. Automatica, 45(4), 918–927.
- Thomas, M., Bandyopadhyay, B., and Vachhani, L. (2021). Discrete-time sliding mode control design for unicycle robot with bounded inputs. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(8), 2912–2916.
- Xie, C., Fan, Y., and Qiu, J. (2020). Event-based tracking control for nonholonomic mobile robots. Nonlinear Analysis: Hybrid Systems, 38, 100945.
- Zhang, M. and Liu, H. (2014). Game-theoretical persistent tracking of a moving target using a unicycletype mobile vehicle. IEEE Transactions on Industrial Electronics, 61(11), 6222–6233.
- Zhang, P., Liu, T., and Jiang, Z.P. (2022). Tracking control of unicycle mobile robots with event-triggered and self-triggered feedback. IEEE Transactions on Automatic Control, 68(4), 2261–2276.
- Zhu, Q. (2018). Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Transactions on Automatic Control, 64(9), 3764–3771.