| Yoshua Díaz | Instituto Politécnico Nacional |
| Jorge Dávila | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2025.010
Resumen: This article presents the design of a robust control strategy applied to a Unicycle Mobile Robot (UMR), which is subject to disturbances caused by wheel slippage, to provide trajectory tracking. By implementing a saturated super-twisting control, the velocity signals of the UMR are guaranteed to remain continuous and within specified maximum bounds. Stability analysis is based on Lyapunov functions and invariant sets, demonstrating that the sliding variables converge to the origin in finite time. The specific design of the sliding variables ensures that the tracking errors asymptotically converge to zero. Consequently, the UMR successfully follows the desired trajectory while satisfying the velocity constraints and dealing with the disturbances.

¿Cómo citar?
Díaz, Y. & Dávila, J. (2025). Saturated Super-Twisting Control for Trajectory Tracking of A Unicycle Mobile Robot. Memorias del Congreso Nacional de Control Automático 2025, pp. 56-61. https://doi.org/10.58571/CNCA.AMCA.2025.010
Palabras clave
Autonomous Vehicles, Sliding Mode control, Mobile Robots, Trajectory Tracking, Saturated Control.
Referencias
- Asif, M., Memon, A.Y., and Khan, M.J. (2016). Output feedback control for trajectory tracking of wheeled mobile robot. Intelligent Automation & Soft Computing, 22, 75–87.
- Cao, G., Yang, J., Qiao, L., Yang, Z., and Zhang, W. (2022). Adaptive output feedback super twisting algorithm for trajectory tracking control of USV’s with saturated constraints. Ocean Engineering, 259, 111507.
- Castillo, I., Steinberger, M., Fridman, L., Moreno, J., and Horn, M. (2016). Saturated super-twisting algorithm: Lyapunov based approach. volume 2016-July, 269–273.
- Chen, M. (2017). Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Transactions on Industrial Electronics, 64, 3359–3368.
- Gao, L., Qin, H., Li, P., and Si, J. (2024). Saturated exponential super-twisting sliding mode control for bottom-following of biomimetic underwater vehicles with unmeasured velocities. Int. J. Robust and Nonlinear Control, 34, 681–702.
- Golkani, M.A., Koch, S., Reichhartinger, M., and Horn, M. (2018). A novel saturated super-twisting algorithm. Systems & Control Letters, 119, 52–56.
- Gong, M., Zhou, D., and Zou, X. (2022). Saturated supertwisting sliding mode missile guidance. Chinese Journal of Aeronautics, 35, 292–300.
- Guerrero, J., Chemori, A., Creuze, V., Torres, J., and Campos, E. (2024). Saturated STA-based sliding-mode tracking control of AUV’s: Design, stability analysis, and experiments. Ocean Engineering, 301, 117560.
- Li, J.W. (2022). Adaptive tracking and stabilization of nonholonomic mobile robots with input saturation. IEEE Transactions on Automatic Control, 67, 6173–6179.
- Lv, M., Gu, N., Wang, D., and Peng, Z. (2023). Gvf-based guidance and super-twisting control of autonomous Surface vehicle for target tracking in obstacle environments with experiments. Control Eng. Pract., 133, 105434.
- Mera, M., Ríos, H., and Martínez, E.A. (2020). A slidingmode based controller for trajectory tracking of perturbed unicycle mobile robots. Control Eng. Pract., 102, 104548.
- Rochel, P., Ríos, H., Mera, M., and Dzul, A. (2022). Trajectory tracking for uncertain unicycle mobile robots: A supertwisting approach. Control Eng. Pract., 122, 105078.
- Seeber, R. and Horn, M. (2019). Guaranteeing disturbance rejection and control signal continuity for the saturated super-twisting algorithm. IEEE Control Syst. Lett., 3, 715–720.
- Seeber, R. and Horn, M. (2017). Stability proof for a wellestablished super-twisting parameter setting. Automatica, 84, 241–243.
- Seeber, R. and Reichhartinger, M. (2020). Conditioned supertwisting algorithm for systems with saturated control action. Automatica, 116, 108921.
- Tijjani, A.S., Chemori, A., Ali, S.A., and Creuze, V. (2023). Continuous–discrete observation-based robust tracking control of underwater vehicles: Design, stability analysis, and experiments. IEEE Transactions on Control Systems Technology, 31, 1477–1492.
