Ixbalank Torres | Universidad de Guanajuato |
Jesús David Avilés | Universidad Autónoma de Baja California |
Alejandro Vargas | Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Instituto de Ingeniería – UNAM |
https://doi.org/10.58571/CNCA.AMCA.2022.065
Resumen: In this paper, an interval observer-based fault detection strategy is proposed to deal with faults in the hydrogen flow rate sensor of a biohydrogen production process. A control Hinf-based robust interval observer is designed to (i) estimate the glucose and biomass concentrations from measurements of the hydrogen flow rate produced, (ii) attenuate the effect of the unknown inlet glucose concentration, and (iii) detect faults in the hydrogen flow rate sensor through adaptive thresholds. The gain is designed by solving a semi-definite optimization problem subject to LMIs. The feasibility of the proposed strategy is demonstrated by simulations.
¿Cómo citar?
Ixbalank Torres, Jesús David Avilés & Alejandro Vargas. Sensor fault detection in a biohydrogen production process based on an interval observer and adaptive thresholds. Memorias del Congreso Nacional de Control Automático, pp. 324-330, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.065
Palabras clave
Detección y Aislamiento de Fallas; Control Robusto; Procesos Biotecnológicos
Referencias
- Chilali, M. and Gahinet, P. (1996). H1 design with pole placement constraints: An LMI approach. IEEE Transactions on Automatic Control, 41(3), 358–367.
- CVX Research, I. (2012). CVX: Matlab Software for Disciplined Convex Programming, version 2.0. http://cvxr.com/cvx.
- Arzelier, J. Bernussous, G.G. (1993). Pole assignment of linear uncertain systems in a sector via a Lyapunov-type approach. IEEE Transactions on Automatic Control, 38(7), 1128–1132.
- Gahinet, P. and Apkarian, P. (1994). A linear matrix inequality approach to H1 control. International Journal of Nonlinear Control, 4, 421–448.
- Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura (eds.), Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, 95 –110. Springer-Verlag Limited.
- Li, L., Shao, Z., Niu, R., Liu, G., and Wang, Z. (2018). A new Interval observer design method with application to fault detection. In International Symposium on Positive Systems, 233–243. Springer.
- Meslem, N., Martinez, J., Ramdani, N., and Besanc¸on, G. (2020). An Interval observer for uncertain continuous-time linear systems. International Journal of Robust and Nonlinear Control, 30(5), 1886–1902.
- Nuñez, S., Garelli, F., and De Battista, H. (2012). Sliding mode observer for biomass estimation in a biohydrogen production process. International Journal of Hydrogen Energy, 37(13), 10089–10094.
- Nuñez, S., Garelli, F., and De Battista, H. (2014). Second-order sliding mode observer for biomass concentration and growth rate estimation in batch photo-bioreactors. International Journal of Hydrogen Energy, 39(16), 8772–8779.
- Su, Q., Fan, Z., Lu, T., Long, Y., and Li, J. (2020). Fault detection for switched systems with all modes unstable based on interval observer. Information Sciences, 517, 167–182.
- Torres, I. and Avil´es, J.D. (2021). Observer-based sensor fault detection in a dark fermenter for hydrogen production. IEEE Control Systems Letters, 5(5), 1621–1626. doi:10.1109/LCSYS.2020.3042391.
- Torres-Zúñiga, I., Vargas, A., Latrille, E., and Buitron, G. (2015). Robust observation strategy to estimate the substrate concentration in the influent of a fermentative bioreactor for hydrogen production. Chemical Engineering Science, 219, 126–134.
- Torres-Zúñiga, I., Villa-Leyva, A., Vargas, A., and Buitr´on, G. (2018). Experimental validation of online monitoring and optimization strategies applied to a biohydrogen production dark fermenter. Chemical Engineering Science, 190, 48–59.