Villanueva, Mario Eduardo | ShanghaiTech |
Resumen: Este artículo analiza una clase de sistemas lineales estócasticos discretos, cuya secuencia de ruido consiste en variables aleatorias independientes e idénticamente uniformemente distribuidas en zonotopos. Se propone un método basado en cumulantes para aproximar tanto las distribuciones transitorias como la distribución lı́mite de la secuencia de estados. El método está basado en una nueva clase de ecuaciones k-simétricas de Lyapunov que se utilizan para construir los cumulantes de manera explı́cita. Las distribuciones transitorias y lı́mite de la secuencia de estado son reconstruidas por medio de una expansión generalizada de Gram-Charlier con utilizando polinomios multivariados de Chebyshev. Esta construcción converge de manera uniforme a las distribuciones exactas bajo suposiciones no-restrictivas.
¿Cómo citar?
Mario E. Villanueva. Sistemas Lineales Estocásticos con Soporte Zonotópico. Memorias del Congreso Nacional de Control Automático, pp. 279-284, 2019.
Palabras clave
Sistemas Estocásticos, Control de Sistemas Lineales, Cómputo para Control
Referencias
- Aubin, J.P. (1991). Viability theory. Birkhauser Boston.
- Berkowitz, S. and Garner, F. (1970). The calculation of multidimensional hermite polynomials and gramcharlier coefficients. Mathematics of Computation, 24(11), 537–545.
- Bertsekas, D.P. and Shreve, S. (1978). Stochastic optimal control: the discrete-time case. Academic Press.
- Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time systems. Systems & control letters, 11(3), 243–248.
- Bittanti, S., Colaneri, P., and De Nicolao, G. (1991). The periodic riccati equation. In S. Bittani, A.J. Laub, and J.C. Willems (eds.), The Riccati Equation, 127– 162. Springer Verlag.
- Blanchini, F. and Miani, S. (2008). Set-theoretic methods in control. Springer, Birkhauser.
- Busam, R. and Freitag, E. (2009). Complex analysis. Springer.
- Caflisch, R.E. (1998). Monte carlo and quasi-monte carlo methods. Acta numerica, 7, 1–49.
- Caines, P.E. (1988). Linear stochastic systems, volume 77. John Wiley NYC.
- Holmquist, B. (1985). The direct product permuting matrices. Linear and Multilinear Algebra, 17(2), 117– 141.
- Julier, S.J. and Uhlmann, J.K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.
- Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering, 82(1), 35–45.
- Kendall, M.G. and Stuart, A. (1969). The advanced theory of statistics, volume 3. Charles Griffin.
- Klartag, B. (2007). A central limit theorem for convex sets. Inventiones mathematicae, 168(1), 91–131.
- Kolmanovsky, I. and Gilbert, E.G. (1998). Theory and computation of disturbance invariant sets for discretetime linear systems. Mathematical problems in engineering: Theory, Method and Applications, 4(4), 317– 367.
- Kurzhanskiy, A.A. and Varaiya, P. (2007). Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Transactions on Automatic Control, 52(1), 26–38.
- Loh, W.L. (1996). On latin hypercube sampling. The annals of statistics, 24(5), 2058–2080.
- Mason, J.C. and Handscomb, D.C. (2002). Chebyshev polynomials. Chapman & Hall/CRC.
- Noschese, S. and Ricci, P.E. (2003). Differentiation of multivariable composite functions and bell polynomials. Journal of Computational Analysis and Applications, 5(3), 333–340.
- Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., and Mayne, D.Q. (2005). Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control, 50(3), 406–410. Trefethen, L.N. (2013). Approximation theory and approximation practice, volume 128. SIAM.
- Villanueva, M.E., Houska, B., and Chachuat, B. (2015). Unified framework for the propagation of continuoustime enclosures for parametric nonlinear odes. Journal of Global Optimization, 62(3), 575–613.
- Withers, C.S. and Nadarajah, S. (2014). The dual multivariate charlier and edgeworth expansions. Statistics & Probability Letters, 87, 76–85.
- Xiu, D. and Karniadakis, G.E. (2002). The wiener–askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing, 24(2), 619–644.
- Zhang, D. (2002). Stochastic methods for flow in porous media: coping with uncertainties. Academic Press.