| Ernesto Rios Valenzuela | Universidad Autónoma de Baja California |
| Raúl Rascón Carmona | Universidad Autónoma de Baja California |
| Víctor Manuel Valenzuela Hanon | Universidad Autónoma de Baja California |
| Luis Omar Moreno Ahedo | Universidad Autónoma de Baja California |
| Jonathan Peña Ramírez | Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California |
| Silvia Eileen Cuevas Alvarez | Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California |
https://doi.org/10.58571/CNCA.AMCA.2025.042
Resumen: This study explores the application of a DC/DC buck power converter integrated with sliding mode control (SMC) to achieve smooth and precise startup control for a permanent magnet DC motor (PMDC). The control objective is to track the speed trajectory for the motor and the voltage for the converter. The primary goal is to regulate the motor’s voltage during startup, ensuring a controlled ramp-up that minimizes inrush currents and mechanical stress, which are critical for enhancing motor longevity and system reliability. The study includes a comprehensive theoretical analysis, supported by simulation to demonstrate the effectiveness of the proposed approach.

¿Cómo citar?
Rios Valenzuela, E., Rascón Carmona, R., Valenzuela Hanon, V., Moreno Ahedo, L., Peña Ramírez, J. & Cuevas Alvarez, S. (2025). Sliding Mode Control for Smooth Startup of Permanent DC Magnet Motors Using a
DC/DC Buck Converter and State Observers. Memorias del Congreso Nacional de Control Automático 2025, pp. 244-249. https://doi.org/10.58571/CNCA.AMCA.2025.042
Referencias
- Ardhenta, L. and Subroto, R.K. (2020). Feedback control for buck converter-dc motor using observer. In 2020 12th International Conference on Electrical Engineering (ICEENG), 30–33. IEEE.
- Guldemir, H. et al. (2011). Study of sliding mode control of dc-dc buck converter. Energy and power Engineering, 3(04), 401–406.
- Hoyos, F.E., Candelo-Becerra, J.E., and Hoyos Velasco, C.I. (2020). Application of zero average dynamics and fixed point induction control techniques to control the speed of a dc motor with a buck converter. Applied Sciences, 10(5), 1807.
- Krstic, M., Kokotovic, P.V., and Kanellakopoulos, I. (1995). Nonlinear and adaptive control design. John Wiley & Sons, Inc. Levant, A. (1998). Robust exact differentiation via sliding mode technique. automatica, 34(3), 379–384.
- Liou, W.R., Yeh, M.L., and Kuo, Y.L. (2008). A high efficiency dual-mode buck converter ic for portable applications. IEEE Transactions on Power Electronics, 23(2), 667–677.
- Roy, T., Paul, L., Sarkar, M., Pervej, M., and Tumpa, F. (2017). Adaptive controller design for speed control of dc motors driven by a dc-dc buck converter. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), 100–105. IEEE.
- Salih, M.M., Al-Araji, A.S., and Jeiad, H.A. (2020). Modeling and analysis of dc-dc buck converter for mobile applications. International Journal of Science and Research (IJSR), 9(4), 1088–1093.
- Shtessel, Y., Edwards, C., Fridman, L., Levant, A., et al. (2014). Sliding mode control and observation, volume 10. Springer.
- Silva-Ortigoza, R., Hernández-Guzmán, V.M., Antonio- Cruz, M., and Munoz-Carrillo, D. (2014). Dc/dc Buck power converter as a smooth starter for a dc motor based on a hierarchical control. IEEE Transactions on Power Electronics, 30(2), 1076–1084.
- Sira-Ramirez, H., Escobar, G., and Ortega, R. (1996). On passivity-based sliding mode control of switched dc-todc power converters. In IEEE Conference on Decision and Control, volume 3, 2525–2526. INSTITUTE OF ELECTRICAL ENGINEERS INC (IEE).
- Utkin, V., Guldner, J., and Shi, J. (2017). Sliding mode control in electro-mechanical systems. CRC press.
- Xiao, J., Peterchev, A., Zhang, J., and Sanders, S. (2004). An ultra-low-power digitally-controlled buck converter ic for cellular phone applications. In Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC’04., volume 1, 383–391. IEEE.
