Itzae, Hernández-Fuentes | Universidad Nacional Autónoma de México |
Daniela, Vera-Martínez | Universidad Nacional Autónoma de México |
Ramírez-Chavarría, Roberto Giovanni | Universidad Nacional Autónoma de México |
Torres, Lizeth | Universidad Nacional Autónoma de México |
Daniel, Martínez-Gutiérrez | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2023.028
Resumen: In the ongoing search for efficient techniques to identify and validate dynamic models in various fields of science and engineering, the sparse identification of nonlinear dynamics (SINDy) algorithm has emerged as a promising tool to carry out this task. In this study, SINDy is applied to identify two chemical processes: pH neutralization and temperature control in a bioreactor. To accomplish this, firstly, the dynamic behavior of each system was modeled, and data were collected for both processes. Then, the studied algorithm was employed to identify the dynamic models of each process. Then, the identified models by SINDy were validated by comparing them with first-principles models. Several tests were conducted to assess the capability of SINDy-based models in predicting the dynamic behavior of the pH and temperature processes. The results revealed a satisfactory agreement between the models obtained by SINDy and the first-principles models. Hence, we show the SINDy algorithm could be reliable tool for identifying dynamic models for chemical processes.
¿Cómo citar?
Itzae, Hernández-Fuentes; Daniela, Vera-Martínez; Ramírez-Chavarría, Roberto Giovanni; Torres, Lizeth; Daniel, Martínez-Gutiérrez. Sparse Identification of Chemical Processes: A Feasibility Study. Memorias del Congreso Nacional de Control Automático, pp. 62-67, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.028
Palabras clave
Modelado e Identificación de Sistemas; Procesos Biotecnológicos; Control de Sistemas No Lineales
Referencias
- Abdullah, F. and Christofides, P.D. (2023). Data-based modeling and control of nonlinear process systems using sparse identification: An overview of recent results. Computers and Chemical Engineering, 174. doi:10.1016/j.compchemeng.2023.108247.
- Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. The Proceedings of the National Academy of Sciences, 113, 3932-3937. doi:10.1073/pnas.1517384113.
- Castelán, R. and Gonzalez, B. (2003). Modelado de un sistema de control de ph. Memorias del Congreso Nacional de Control Autom´atico, 3, 67-72.
- Champion, K., Zheng, P., Aravkin, A.Y., and Brunton., S.L. (2020). A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access, 8, 169259-169271. doi:10.1109/access.2020.3023625.
- Elameen, M.H.E., Hago, M.B.M., and Tan, W. (2019). ph neutralization process control based on active disturbance rejection control. Advances in Science, Technology and Engineering Systems Journal, 4, 104-108. doi:10.25046/aj040513.
- Kaheman, K., Kutz, J.N., and Brunton, S.L. (2020). Sindy-pi: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476, 202-279. doi:0.1098/rspa.2020.0279.
- Kyu, K.D., Soon, L.K., and Ryook, Y.D. (2004). Control of ph neutralization process using simulation based dynamic. Korean Journal of Chemical Engineering, 21, 942-949. doi:10.1007/BF02705575.
- Lorenzo, M.H. (2020). Determinación de los parámetros de etanol en el proceso de fermentación y destilación para la producción artesanal de POX con sabor. Ph.D. thesis, Instituto Tecnológico de Tuxtla.
- Michael, A.H. (1994). Adaptive nonlinear control of a ph neutralization process. IEE Transactions of Control Systems Technology, 2, 169-182. doi:10.1109/87.317975.
- Morales, L., Estrada, J.S., and Herrera, M. (2022). Hybrid approaches-based sliding-mode control for ph process control. ACS Omega, 7, 45301-45313. doi:10.1021/acsomega.2c05756.
- Nagy, Z.K. (2007). Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chemical Engineering Journal, 127(1), 95-109. doi:10.1016/j.cej.2006.10.015.
- Rahman, S.S. (2013). Effect of various parameters on the growth and ethanol production by yeasts insolated from natural sources. Bangladesh Journal of Microbiology, 30(1y2), 49-54. doi:10.3329/bjm.v30i1-2.28453.