| Brian Javier Aguilera-Cedillo | Centro de Investigación Científica y de Educación Superior de Ensenada |
| Adrian Arellano-Delgado | Secretaría de Ciencia, Humanidades, Tecnología e Innovación |
| César Cruz-Hernández | Centro de Investigación Científica y de Educación Superior de Ensenada |
| Rosa Martha López-Gutiérrez | Universidad Autónoma de Baja California |
https://doi.org/10.58571/CNCA.AMCA.2025.063
Resumen: In this work we have a spatially dependent time synchronization with differential traction type mobile robots, which will simulate a firefly network environment. In particular, we have in a virtual environment a group of terrestrial mobile robots in which the synchronization of different oscillating signals emitted by each mobile robot is intended to be achieved. The conventional control law proposed to synchronize the oscillating signals coupled to the robots will depend on the position in space of the robots, which may be synchronized (in phase or anti-phase) or not, to a periodic or randomly generated trajectory.

¿Cómo citar?
Aguilera-Cedillo, B., Arellano-Delgado, A., Cruz-Hernández, C. & López-Gutiérrez, R. (2025). Spatially-dependent time synchronization of mobile robots simulating a firefly environment. Memorias del Congreso Nacional de Control Automático 2025, pp. 367-372. https://doi.org/10.58571/CNCA.AMCA.2025.063
Palabras clave
Synchronization, Oscillators, Mobile robot, Linearization by dynamic feedback.
Referencias
- Aguilera-Cedillo, B.J. (2024). Sincronización temporal espacialmente dependiente de robots móviles simulando un entorno luciérnaga. Tesis de licenciatura, Universidad Autónoma de Baja California, Facultad de Ingeniería, Arquitectura y Diseño, Ensenada, Ensenada, Baja California, México. URL https://hdl.handle.net/20.500.12930/12325. Licenciatura.
- Ali, A.M., Shen, C., and Hashim, H.A. (2024). A linear mpc with control barrier functions for differential drive robots. IET Control Theory & Applications, 18(18), 2693–2704. doi:10.1049/cth2.12709. URL https://doi.org/10.1049/cth2.12709.
- Arellano-Delgado, A., Cruz-Hernández, C., López Gutiérrez, R.M., and Posadas-Castillo, C. (2015). Outer synchronization of simple firefly discrete models in coupled networks. Mathematical Problems in Engineering, 2015, 1–14. doi:10.1155/2015/895379. URL https://doi.org/10.1155/2015/895379.
- Buck, J. and Buck, E. (1978). Toward a functional interpretation of synchronous flashing by fireflies. The American Naturalist, 112, 471 – 492. doi:10.1086/283291.
- Buscarino, A., Fortuna, L., Frasca, M., and Rizzo, A. (2009). Synchronization in Networks of Mobile Agents, 3–25. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-642-03199-1 1. URL https://doi.org/10.1007/978-3-642-03199-1 1.
- De Luca, A., Oriolo, G., and Vendittelli, M. (2000). Stabilization of the unicycle via dynamic feedback linearization. IFAC Proceedings Volumes, 33(27), 687–692. doi:10.1016/S1474-6670(17)38011-4. URL https://doi.org/10.1016/S1474-6670(17)38011-4. 6th IFAC Symposium on Robot Control (SYROCO 2000), Vienna, Austria, 21-23 September 2000.
- Gu, Y., Zhao, J., Sun, Z.Y., and Xie, X. (2024). Reinforcement learning-based optimized multi-agent finite-time optimal synchronisation control and its application to the harmonic oscillator. Nonlinear Dynamics. doi:10.1007/s11071-024-09758-7. URL https://doi.org/10.1007/s11071-024-09758-7.
- Guo, Y., Sun, Q., Pan, Q., and Wang, Y. (2025). Paretooptimal synchronization control of nonlinear multi-agent systems via integral reinforcement learnings. Nonlinear Dynamics. doi:10.1007/s11071-024-10461-w. URL https://doi.org/10.1007/s11071-024-10461-w.
- Kuramoto, Y. (1984). hemical Oscillations, Waves, and Turbulence. Springer.
- Li, J. and Yang, S.X. (2024). Intelligent fish-inspired foraging of swarm robots with sub-group behaviors based on neurodynamic models. Biomimetics, 9(1). doi:10.3390/biomimetics9010016. URL https://www.mdpi.com/2313-7673/9/1/16.
- López-Parra, A. (2017). Formación en grupos de robots móviles. Tesis de maestría en ciencias, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México.
- Thai, N.H., Thien, H., and Ly, T.T.K. (2022). Nurbs curve trajectory tracking control for differential-drive mobile robot by a linear state feedback dynamic controller. In A.T. Le, V.S. Pham, M.Q. Le, and H.L. Pham (eds.), The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering, 610–623. Springer Nature Singapore, Singapore.
- Tran, A.M. and Vu, T.V. (2024). A dynamic controller architecture for wheeled mobile robot trajectory tracking utilizing feedback linearization and state feedback. Journal of Advanced Engineering and Computation, 8(2), 119–129. doi:10.55579/jaec.202482.456. URL https://doi.org/10.55579/jaec.202482.456.
- Suster, P. and Jadlovsk´a, A. (2010). Neural Tracking Trajectory of the Mobile Robot Khepera II in Internal Model Control Structure. In Proceedings of the 9th International Conference Process Control, C153a-1–C153a-13. Kouty nad Desnou, Czech Republic.
