| Jorge Emilio García Contreras | Universidad Iberoamericana |
| Javier Villafuerte de Gortari | Universidad Iberoamericana |
| Joel Arango-Ramirez | Universidad Iberoamericana |
| Mario Ramirez-Neria | Universidad Iberoamericana |
https://doi.org/10.58571/CNCA.AMCA.2025.048
Resumen: The problem addressed in this project is the interconnectivity between different PLCs to avoid brand lock-in. Currently, this type of connection is a challenge for manufacturers, as existing solutions involve high costs and vendor dependencies. A simple and low-cost solution is needed to reuse PLCs. Python is used as the central system, acting as a conductor and communicating with each component via Modbus TCP. To visualize and manage them, an interface is created with PySide/Qt Designer in SCADA format. The results support the use of both new and semi-used equipment with Modbus communication, reducing costs, facilitating use for training purposes and including Industry 4.0 applications.

¿Cómo citar?
García Contreras, J., Villafuerte de Gortari, J., Arango-Ramirez, J. & Ramirez-Neria, M. (2025). Standardizing Heterogeneous PLC Communication: An Open-Source Approach with Python and Modbus TCP. Memorias del Congreso Nacional de Control Automático 2025, pp. 280-285. https://doi.org/10.58571/CNCA.AMCA.2025.048
Referencias
- Al-Dalky, R., Abduljaleel, O., Salah, K., Otrok, H., & Al-Qutayri, M. (2014). A modbus traffic generator for evaluating the security of scada systems. 2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 809–814. https://ieeexplore.ieee.org/document/6923938
- Carlos, Q.-Q. J., Ernesto, F.-G., Víctor, Q.-A., & Jorge, B.-L. (2014). Diseño e implementación de un sistema de control y monitoreo basado en hmi-plc para un pozo de agua potable. Ingeniería, investigación y tecnología, 15 (1), 41–50.
- Castiglione, F., Vergara, S., & Ramírez, G. (2021). Python software to monitor ncre generation systems. 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies (CHILECON), 623–628. https : / / doi . org / 10 . 1109 /CHILECON54041.2021.9702975 - Chai, D. Y. W. (2023). Design of a python-based gui for a microgrid scada system: Real-time data acquisition and supervisory control [Bachelor’s thesis]. Nanyang Technological University. https : / / dr . ntu . edu . sg /handle/10356/167101
- Cóndor Chuqui, D. A. (2019). Automatización de un sistema de refrigeración industrial mediante un plc, interface hmi y control remoto desde dispositivos móviles [B.S. thesis]. Quito. Contributors to pymodbus. (2024). Pymodbus documentation, version 3.5.1. https://pymodbus.readthedocs.io/en/latest/
- Das, R., Dutta, S., Sarkar, A., & Samanta, K. (2013). Automation of tank level using plc and establishment of hmi by scada. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 7 (2), 61–67.
- Delta Electronics. (n.d.). Controlador lógico programable delta plc 243 [s.f.]. https://www.deltaww.com/en-US/products/PLC-Programmable-Logic-Controllers/243
- Horner Automation. (n.d.). Xl4: Modular plc with hmi and communication ports [s.f.]. https://hornerautomation.com/product/xl4/
- Hsiao, C.-H., & Lee, W.-P. (2021). Opiiot: Design and implementation of an open communication protocol platform for industrial internet of things. Internet of Things, 16, 100441.
- Koshti, V. M., & Joshi, S. M. (2007). Design of human machine interface for plc based automation system. IFAC Proceedings Volumes, 40 (18), 343–346.
- Mehta, K., Joshi, R., Jadav, H. M., Kulkarni, S. V., Soni, B. H., & Mali, A. (2015). Integration of modbus/tcp master monitoring and control system using python for high power rf system. 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO).
- Merchán, D. F., Peralta, J. A., Vazquez-Rodas, A., Minchala, L. I., & Astudillo-Salinas, D. (2017). Open source scada system for advanced monitoring of industrial processes. 2017 International Conference on Information Systems and Computer Science (INCISCOS), 160–165. https://doi.org/10.1109/INCISCOS.2017.9
- Pérez-López, E. (2015). Los sistemas scada en la automatización industrial. Tecnología en Marcha, 28 (4), 3–14.
- ProSoft Technology. (2008). An introduction to modbus tcp/ip. https : / / www . prosoft – technology. com / kb /assets/intro_modbustcp.pdf
- Rodríguez Picón, L. A., Pérez Olguín, I. J. C., Méndez-González, L. C., & Gómez Álvarez, A. (2023). Control de un almacén automatizado por medio de python y con una interfaz gráfica. Memoria en extenso del Congreso Internacional de Investigación Academia Journals Morelia 2023. https://cathi.uacj.mx/handle/20.500.11961/25871
- Rosas Quiroz, J. P. (2023). Diseño de un sistema scada para un proceso industrial controlado por un plc s7-1200 mediante una página web diseñada en Python [Bachelor’s thesis]. Benemérita Universidad Autónoma de Puebla. https://repositorioinstitucional.buap.mx/items/3890a2ea-236a-4526-9cd7-30d477cc8fef
- Salari, M. E., Enoiu, E. P., Seceleanu, C., Afzal, W., & Sebek, F. (2023). Automating test generation of industrial control software through a plc-to-python translation framework and pynguin. 2023 30th Asia-Pacific Software Engineering Conference (APSEC), 431–440. https://ieeexplore.ieee.org/document/10479451
- The Qt Company. (2023). Qt for python: Pyside6.qtwidgets module documentation. https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/index.html
- Toledo Torres, D. D., Urgilés Cárdenas, P. D., Pérez, J., & Sánchez, M. (2017). Diseño e implementación de un sistema scada mediante protocolo modbus con comunicación inalámbrica para el control de un robot [Bachelor’s thesis]. Universidad del Azuay. https://dspace.uazuay.edu.ec/handle/datos/7203
- Voyiatzis, A. G., Katsigiannis, K., & Koubias, S. (2015). A modbus/tcp fuzzer for testing internetworked industrial systems. 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). https://ieeexplore.ieee.org/document/7301400
- Yadav, G., & Paul, K. (2021). Architecture and security of scada systems: A review. International Journal of Critical Infrastructure Protection, 34, 100433. https://doi.org/10.1016/j.ijcip.2021.100433
