Ricardo Gutierrez | Universidad Politecnica de Pachuca |
Jaime Gonzalez-Sierra | Universidad Politecnica de Pachuca |
Tonatiuh Hernandez-Cortes | Universidad Politecnica de Pachuca |
Victor Estrada-Manzo | Universidad Politecnica de Pachuca |
Miguel Bernal | Institute of Technology, Ciudad Obregon |
https://doi.org/10.58571/CNCA.AMCA.2022.022
Resumen: This paper presents an alternative to design a static output feedback controllers for nonlinear descriptor systems. The methodology is based on the direct Lyapunov method, from which, after a convex rewriting of the original nonlinear systems, conditions in the form of linear matrix inequalities are obtained. The proposal is shown to be more relaxed than previous ones in two ways; first, unmesaurable nonlinearities can be directly considered and, second, more flexibility can be obtained with the selection of different slack variables; such advantages are illustrated via numerical examples.
¿Cómo citar?
Ricardo Gutierrez, Jaime Gonzalez-Sierra, Tonatiuh Hernandez-Cortes, Victor Estrada-Manzo & Miguel Bernal. Static Output Feedback Controller Design for Nonlinear Descriptor Systems Via Relaxed LMI Conditions. Memorias del Congreso Nacional de Control Automático, pp. 109-114, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.022
Palabras clave
Control de Sistemas No Lineales; Control Difuso; Robótica y Mecatrónica
Referencias
- Bernal, M., Sala, A., Lendek, Z., and Guerra, T.M. (2022). Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach, volumen 408. Springer Nature.
- Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory, volume 15. Siam.
- Cao, Y.Y., Lam, J., and Sun, Y.X. (1998). Static output feedback stabilization: an ILMI approach. Automatica, 34(12), 1641–1645.
- Chadli, M., Darouach, M., and Daafouz, J. (2008). Static output stabilisation of singular LPV systems: LMI formulation. In 2008 47th IEEE Conference on Decision and Control, 4793–4796. IEEE.
- Chadli, M. and Guerra, T.M. (2012). LMI solution for robust static output feedback control of discrete Takagi–Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 20(6), 1160–1165.
- Crusius, C. and Trofino, A. (1999). Sufficient LMI conditions for output feedback control problems. IEEE Transactions on Automatic Control, 44(5), 1053–1057.
- Estrada-Manzo, V., Lendek, Z., and Guerra, T. (2019). An alternative lmi static output feedback control design for discrete-time nonlinear systems represented by takagi–sugeno models. ISA transactions, 84, 104–110.
- Estrada-Manzo, V., Guerra, T.M., and Lendek, Z. (2015). Static output feedback control for continuous-time TS descriptor models: Decoupling the Lyapunov function. In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–5.
- Geromel, J.C., De Souza, C., and Skelton, R.E. (1998). Static output feedback controllers: Stability and convexity. IEEE Transactions on Automatic Control, 43(1), 120–125.
- Huang, D. and Nguang, S.K. (2007). Static output feedback controller design for fuzzy systems: An ILMI approach. Information Sciences, 177(14), 3005–3015.
- Kau, S.W., Lee, H.J., Yang, C.M., Lee, C.H., Hong, L., and Fang, C.H. (2007). Robust H1 fuzzy static output feedback control of TS fuzzy systems with parametric uncertainties. Fuzzy sets and systems, 158(2), 135–146.
- Lewis, F., Dawson, D., and Abdallah, C. (2003). Robot manipulator control: theory and practice. CRC Press.
- Lofberg, J. (2004). YALMIP : a toolbox for modeling and optimization in MATLAB. In 2004 IEEE International Symposium on Computer Aided Control Systems Design, 284–289.
- Luenberger, D. (1977). Dynamic equations in descriptor form. IEEE Transactions on Automatic Control, 22(3), 312–321.
- Ohtake, H., Tanaka, K., and Wang, H.O. (2001). Fuzzy modeling via sector nonlinearity concept. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, volume 1, 127–132.
- Ohtake, H., Tanaka, K., and Wang, H. (2003). Piecewise nonlinear control. In 42nd IEEE Conference on Decision and Control, 2003, volume 5, 4735–4740.
- Oliveira, M. and Skelton, R. (2001). Stability tests for constrained linear systems. In Perspectives in robust control, volume 268 of Lecture Notes in Control and Information Sciences, 241–257. Springer-Verlag, Berlin.
- Scherer, C. and Weiland, S. (2000). Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, 3(2).
- Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12, 625–653.
- Syrmos, V.L., Abdallah, C.T., Dorato, P., and Grigoriadis, K. (1997). Static output feedback—a survey. Automatica, 33(2), 125–137.
- Tuan, H., Apkarian, P., Narikiyo, T., and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems, 9(2), 324–332.