Jauregui-Acevedo, Rodolfo | TecNM/Instituto Tecnológico De Aguascalientes |
Villalobos Piña, Francisco Javier | TecNM/Instituto Tecnológico De Aguascalientes |
Alvarez-Salas, Ricardo | Universidad Autonoma De San Luis Potosi |
Reyes Malanche, Josue Augusto | Universidad Autonoma De San Luis Potosi |
Saucedo Zárate, Carlos Humberto | TecNM/Instituto Tecnológico De Aguascalientes |
Alvarez Salas, Jose Antonio | Universidad Autonoma De San Luis Potosi |
Rodriguez-Cobos, Amparo | Universidad Autonoma De San Luis Potosi |
Resumen: This work addresses the problem of stator short-circuit fault detection for an in-wheel Brushless Direct Current (BLDC) motor using a perceptron artificial neural network. The proposed FD scheme was compared with the motor current signature analysis based on discrete Fourier transform and discrete wavelet transform. The algorithms were validated on a test rig with an in-wheel BLDC motor for light electric vehicles.
¿Cómo citar?
R. Jauregui-Acevedo, F. J. Villalobos-Piña, R. Alvarez-Salas, J. A. Reyes-Malanche, C. H. Saucedo-Zarate, J. A. Alvarez-Salas & A. Rodriguez-Cobos. Stator Fault Detection for a BLDC Motor Using an Artificial Neural Network. Memorias del Congreso Nacional de Control Automático, pp. 310-315, 2021.
Palabras clave
Fault detection, BLDC Motor, artificial neural network, perceptron
Referencias
- Heo, S. and Lee, J.H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine, Vol. 51, No. 18, pp. 470–475.
- Shi, Q. and Zhang, H. (2020). Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets. Transactions on Industrial Electronics, Vol. 68, No. 7, pp. 6248–6256.
- Kalyankar-Narwade, S., Chidambaram, R.K., and Patil, S. (2021). Neural network- and fuzzy control-based energy optimization for the switching in parallel hybrid two-wheeler. World Electric Vehicle Journal, Vol. 12, No. 1, pp. 2032–6653.
- Singhl, S.P., Singh, K.K., Verma, K.S., Singh, J., and Tiwari, N. (2018). A Review on control of a brushless DC motor drive. International Journal on Future Revolution in Computer Science & Communication Engineering, Vol. 4, No. 1, pp. 82–97.
- Li, G., Wang, H., Zhang, S., Xin, J., and Liu, H. (2019). Recurrent neural networks based photovoltaic power forecasting approach Energies, Vol. 12, No. 13, Article number 2538.
- Vodovozov, V., Aksjonov, A., Petlenkov, E., and Raud, Z. (2021). Neural network-based model reference control of braking electric vehicles. Energies, Vol. 14, No. 9, Article number 2373.
- Tang, P., Peng, K., Zhang, K., Chen, Z., Yang, X., and Li, L. (2018). A Deep Belief Network-based Fault Detection Method for Nonlinear Processes. IFAC-PapersOnLine, Vol. 51, No. 24, pp. 9–14.
- Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of statical learning. Second Edition, Springer.
- Krummenacher, G., Ong, C.S., Koller, S., Kobayashi, S., and Buhmann, J.M. (2018). Wheel defect detection with machine learning IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 4, pp. 1176– 1187.
- Kudelina, K., Asad, B., Vaimann, T., Belahcen, A., Rassolkin, A., Kallaste, A., and Lukichev, D.V. (2020). Bearing fault analysis of BLDC Motor for electric scooter application Designs Vol. 4, No. 4, Article number 42.
- Fadzail, N. F. and Zali, S.M. (2019). Fault detection and classification in wind turbine by using artificial neural network. International Journal of Power Electronics and Drive System, Vol. 10, No. 3, pp. 1687–1693.
- Sadrossadat, S.A. and Rahmani, O. (2020). ANN-based method for parametric modelling and optimising efficiency, output power and material cost of BLDC motor. IET Electric Power Applications, Vol. 14, No. 6, pp. 951–960.
- Xu, X., Qiao, X., Zhang, Feng, J.N., and Wang, X. (2020). Review of intelligent fault diagnosis for permanent magnet synchronous motors in electric vehicles Advances en Mechanical Engineering, Vol. 12 No. 7, pp. 951–960.
- Reyes-Malanche, J.A., Villalobos-Pina, F.J., CabalYepez, E., Alvarez-Salas R., and Rodriguez-Donate, C. (2021). Open-Circuit Fault Diagnosis in Power Inverters Through Currents Analysis in Time Domain. IEEE Transactions on Instrumentation and Measurement, Vol.70, pp. 1-12.
- Walker, J.S. (2008). A primer on wavelets and their scientific applications. Second edition, Chapman & Hall/CRC.
- Yang, R., Huang, M., Lu, Q., and Zhong, M. (2018). IFAC-PapersOnLine, Vol. 51, No. 24, pp. 470–475.