Alvarez Salas, Jose Antonio | Universidad Autónoma de San Luis Potosí |
Alvarez-Salas, Ricardo | Universidad Autónoma de San Luis Potosí |
González García, Mario Arturo | Universidad Autónoma de San Luis Potosí |
Villalobos Piña, Francisco Javier | Instituto Tecnológico de Aguascalientes |
Cárdenas, Víctor | Universidad Autónoma de San Luis Potosí |
https://doi.org/10.58571/CNCA.AMCA.2024.068
Resumen: This work presents a decision tree-based classifier to diagnose short circuit faults between the stator’s turns in a permanent magnet synchronous generator. The generator currents are processed with the discrete wavelet transform to obtain features to feed the binary classifier that performs the diagnosis. Experimental results are presented to show the performance of the proposed scheme.
¿Cómo citar?
Alvarez Salas, J.A., Alvarez Salas, R., González García, M.A., Villalobos Piña, F.J. & Cárdenas, V. (2024). Stator Fault Diagnosis of a Permanent Magnet Synchronous Generator Using a Decision Tree Classifier. Memorias del Congreso Nacional de Control Automático 2024, pp. 399-404. https://doi.org/10.58571/CNCA.AMCA.2024.068
Palabras clave
Binary classifier, decision tree, faults, permanent magnet synchronous generator
Referencias
- Cherif, H., Menacer, A., Bessam, B., and Kechida, R. (2015). Stator inter turns fault detection using discrete wavelet transform. Proceedings – SDEMPED 2015: IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, 138–142. https://doi.org/10.1109/DEMPED.2015.7303681
- Choudhary, A., Goyal, D., Letha, S.S. (2021). Infrared Thermography-Based Fault Diagnosis of Induction Motor Bearings Using Machine Learning. IEEE Sens. J., 21, 1727–1734 DOI: 10.1109/JSEN.2020.3015868
- Goktas, T., Arkan, M., and Gurusamy, V. (2021). A Comparative study of current, vibration and stray magnetic flux based detection for parallel misalignment fault in induction motors. 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2021,11– 16.https://doi.org/10.1109/SDEMPED5110.2021.9605
- Hoang, D.T. and Kang, H.J. (2020). A motor current signalbased bearing fault diagnosis using deep learning and information fusion. IEEE Transactions on Instrumentation and Measurement, 69(6), 3325–3333. https://doi.org/10.1109/TIM.2019.2933119
- Kao, I.H., Wang, W.J., Lai, Y.H., and Perng, J.W. (2019). Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Transactions on Instrumentation and Measurement, 68(2), 310–324. https://doi.org/10.1109/TIM.2018.2847800
- Kumar, R. et al. (2021). A Topological Neural-Based Scheme for Classification of Faults in Induction Machines. IEEE Transactions on Industry Applications 57(1): 272–83. DOI: 10.1109/TIA.2020.3032944
- Mao, J.; Chen, F.; Jiang, B.; Wang, L. (2019).Composite Fault Diagnosis of Rotor Broken Bar and Air Gap Eccentricity Based on Park Vector Module and Decision Tree Algorithm. In Proceedings of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Xiamen, China, 5–7 July 2019; pp. 701–706.
- Nitish, A. and Singh, A. K. (2019). Condition Monitoring and Fault Diagnosis Techniques of Electric Machines. In 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), 594–599. DOI: 10.1109/RDCAPE47089.2019.8979045
- Raschka, S. and Mirjalili, V. (2019). Python Machine Learning. Third Edit. Birmingham UK: Packt Birmingham-Mumbai
- Toliyat, H. A., Nandi S., Choi S., Meshgin-Kelk H. (2017). Application of Pattern Recognition to Fault Diagnosis. In Electric Machines Modeling, Condition Monitoring and Fault Diagnosis, ed. CRC Press. USA: Taylor and Francis Group, 185. https://doi.org/10.1201/b13008
- Verde, C., Gentil, S., and Morales Menéndez, R. (2013). Monitoreo y Diagnóstico Automático de fallas en Sistemas Dinámicos. Trillas.
- Walker, J.S. (2008). A primer on wavelets and their scientific applications, second edition. Chapman & Hall/CRC.
- Younas, M.B., Ullah, N., Goktas, T., Arkan, M., and Gurusamy, V. (2021). The performance evaluation of machine learning based techniques via stator current and stray flux for broken bar fault in induction motors. IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, https://doi.org/10.1109/SDEMPED5010.201.9605516