Loria, Antonio | CNRS |
Panteley, Elena V. | CNRS |
Maghenem , Mohamed Adlene | L2S – Univ. Paris Sud |
Resumen: We analyze the stability of systems stemming from direct model-reference adaptive control. Although the statements of stability themselves are well-established for many years now, we provide a direct stability analysis both for linear and nonlinear systems under conditions of persistency of excitation. Our proofs are short and constructive as we provide strict Lyapunov functions that have all the required properties as established by Barbashin/Krasovskii’s seminal papers on uniform global asymptotic stability.
¿Cómo citar?
Antonio Loría, Elena Panteley & Mohamed Maghenem. Strict Lyapunov Functions for Model-Reference Adaptive Control Based on the Mazenc Construction. Memorias del Congreso Nacional de Control Automático, pp. 407-412, 2019.
Palabras clave
Sistemas Adaptables, Control de Sistemas Lineales, Control de Sistemas No Lineales
Referencias
- Anderson, B.D.O., Bitmead, R., Johnson, Jr., C., Kokotovi´c, P., Kosut, R., Mareels, I., Praly, L., and Riedle, B. (1986). Stability of adaptive systems. The MIT Press, Cambridge, MA, USA.
- Anderson, B.O. (1977). Exponential stability of linear equations arising in adaptive identification. IEEE Trans. on Automat. Contr., 22(1), 83–88.
- Aström, K.J. and Bohn (1965). Numerical identification of linear dynamic systems from normal operating records. In P.H. Hammond (ed.), Proc. of the 2nd IFAC Symp. on Theory of Self-adaptive Control Systems, 96–111. Nat. Phys. Lab., Teddington, England.
- Barbalat (1959). Syst`emes d’Equations Diff´erentielles d’Oscillations Non Lineaires. Revue de Mathematiques Pures et Appliquees, Vol. 4(2), 267–270. Academie de la Republique Populaire Roumaine (in French).
- Brockett, R. (2000). The rate of descent for degenrate gradient flows. In Math. Th. of Syst. & Networks. Perpignan, France. paper no. SI22_1.
- Fradkov, A.L. (1990). Adaptive control in complex systems. Phys. Math. Lit. Nauka, Moscow. (In Russian).
- Gibson, T.E. and Annaswamy, A.M. (2015). Adaptive control and the definition of exponential stability. In Proc. IEEE American Control Conference, 1549–1554.
- Guzman, E. and Moreno, J.A. (2011). A new finitetime convergent and robust direct model reference adaptive control for siso linear time invariant systems. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, 7027–7032. doi: 10.1109/CDC.2011.6161321.
- Ioannou, P. and Sun, J. (1996). Robust adaptive control. Prentice Hall, New Jersey, USA.
- Khalil, H.K. (1996). Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans. on Automat. Contr., 41(2), 177–188.
- Lee, T.C. (2003). On the equivalence relations of detectability and PE conditions with applications to stability analysis of time-varying systemss. In Proc. IEEE American Control Conference.
- Loría, A. (2004). Explicit convergence rates for MRACtype systems. Automatica, 40(8), 1465–1468.
- Loría, A. and Panteley, E. (2002). Uniform exponential stability of linear time-varying systems:revisited. Syst. & Contr. Letters, 47(1), 13–24.
- Loría, A. and Panteley, E. (2004). Persistency-ofexcitation based explicit convergence rates for MRACtype systems. In IFAC Symposyum on Structures and Systems, 371–376.
- Loría, A., Panteley, E., and Maghenem, M. (2019). Strict Lyapunov functions for model-reference adaptive control: application to Lagrangian systems. IEEE Trans. on Automatic Control. DOI: 10.1109/TAC.2018.2874723.
- Loría, A., Panteley, E., and Teel, A. (1999). A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems. In Proc. 5th. European Contr. Conf., 1363– 1368. Karlsr¨uhe, Germany.
- Loría, A., Panteley, E., and Teel, A. (2000). UGAS of nonlinear time-varying systems: a δ-persistency of excitation approach. In Proc. 39th. IEEE Conf. Decision Contr., 3489–3494. Sydney, Australia.
- Malisoff, M. and Mazenc, F. (2009). Constructions of Strict Lyapunov functions. Springer Verlag, London.
- Mazenc, F. (2003). Strict Lyapunov functions for timevarying systems. Automatica, 39, 349–353.
- Mazenc, F., de Queiroz, M., and Malisoff, M. (2009a). Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems. IEEE Trans. on Automat. Contr., 54(5), 1152–1158.
- Mazenc, F., Malisoff, M., and Benard, O. (2009b). A simplified design for strict lyapunov functions under matrosov conditions. IEEE Trans. on Automat. Contr., 54(1), 177–183.
- Morgan, A.P. and Narendra, K.S. (1977a). On the stability of nonautonomous differential equations ˙x = [A + B(t)]x with skew-symmetric matrix B(t). SIAM J. on Contr. and Opt., 15(1), 163–176.
- Morgan, A.P. and Narendra, K.S. (1977b). On the uniform asymptotic stability of certain linear nonautonomous differential equations. SIAM J. on Contr. and Opt., 15(1), 5–24.
- Narendra, K. and Annaswamy, A. (1986). Robust adaptive control in the presence of bounded disturbances. IEEE Trans. on Automat. Contr., 31(4), 306–315.
- Narendra, K. and Annaswamy, A. (1987). Persistent excitation in adaptive systems. Int. J. of Contr., 45(1), 127–160.
- Narendra, K.S. and Annaswamy, A.M. (1989). Stable adaptive systems. Prentice-Hall, Inc., New Jersey.
- Panteley, E., Loría, A., and Teel, A. (2001). Relaxed persistency of excitation for uniform asymptotic stability. IEEE Trans. on Automat. Contr., 46(12), 1874–1886.
- Sastry, S. and Bodson, M. (1989). Adaptive control: Stability, convergence and robustness. Prentice Hall Intl.