Silva, Cristina | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
Sanchez, Tonametl | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
Lizarraga Navarro, David A. | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
Zavala-Rio, Arturo | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
https://doi.org/10.58571/CNCA.AMCA.2024.002
Resumen: We propose a modification of an existing discretization technique. The technique we atempt to improve is a discretization method designed for homogeneous systems, characterized by first-order consistency, numerical convergence, and the noteworthy feature of preserving both the stability of the system’s equilibrium point and the type of convergence of the solutions toward the origin. Its design is based on the projection of the dynamics of the system over a level surface of the Lyapunov function, and the complementary use of the explicit Euler method. In this work the Euler’s explicit method is replaced by the midpoint method, and it is proved that, with such a change, the discretization methodology continues to preserve both the Lyapunov function and the type of convergence exhibited by the solutions of the original system. Furthermore, it is proven that this new approach improves the accuracy of the method since it can achieve second-order convergence.
¿Cómo citar?
Silva, C., Sanchez, T., Lizarraga, D. A. & Zavala Rio, A. (2024). Study of a Lyapunov-based discretization method using the midpoint approach. Memorias del Congreso Nacional de Control Automático 2024, pp. 7-12. https://doi.org/10.58571/CNCA.AMCA.2024.002
Palabras clave
Lyapunov methods, nonlinear systems, homogeneous systems, numerical methods, discrete-time methods
Referencias
- Bacciotti, A. and Rosier, L. (2005). Liapunov Functions and Stability in Control Theory. Springer, Berlin, 2nd edition. doi:10.1007/b139028.
- Bianchini, R.M. and Stefani, G. (1990). Graded approximations and controllability along a trajectory. SIAM Journal on Control and Optimization, 28(4), 903–924.
- Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations. Mathematica Scandinavica, 4, 33–53.
- Efimov, D., Polyakov, A., and Aleksandrov, A. (2019). Discretization of homogeneous systems using Euler method with a state-dependent step. Automatica, 109, 108546.
- Efimov, D., Polyakov, A., Levant, A., and Perruquetti, W. (2017). Realization and discretization of asymptotically stable homogeneous systems. IEEE Transactions on Automatic Control, 62(11), 5962–5969. doi: 10.1109/TAC.2017.2699284.
- Galias, Z. and Yu, X. (2006). Complex discretization behaviors of a simple sliding-mode control system. IEEE Trans. Circuits Syst. II Express Briefs, 53-II(8), 652–656.
- Hermes, H. (1982). Control systems which generate decomposable Lie algebras. Journal of Differential Equations, 44(2), 166–187.
- Hong, Y., Huang, J., and Xu, Y. (2001). On an output feedback finite-time stabilization problem. IEEE Transactions on Automatic Control, 46(2), 305–309.
- Isaacson, E. and Keller, H.B. (1994). Analysis of Numerical Methods. Dover Publications, N.Y. Nakamura, H., Yamashita, Y., and Nishitani, H. (2002). Smooth Lyapunov functions for homogeneous differential inclusions. In Proceedings of the 41st SICE Annual Conference, 1974–1979. doi: 10.1109/SICE.2002.1196633.
- Polyakov, A., Efimov, D., and Brogliato, B. (2019). Consistent discretization of finite-time and fixed-time stable systems. SIAM Journal on Control and Optimization, 57(1), 78–103.
- Sanchez, T., Efimov, D., Polyakov, A., and Moreno, J.A. (2019). Homogeneous discrete-time approximation. IFAC-PapersOnLine, 52(16), 19–24. 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019.
- Sanchez, T., Polyakov, A., and Efimov, D. (2021). Lyapunov-based consistent discretization of stable homogeneous systems. Int. Journal of Robust and Nonlinear Control, 31(9), 3587–3605. doi:10.1002/rnc.5308.
- Sussmann, H.J. (1987). A general theorem on local controllability. SIAM Journal on Control and Optimization, 25(1), 158–194.