Christian Aldrete-Maldonado | Instituto Tecnológico de Tijuana |
Juan Jesús Hernández Pastrana | Instituto Tecnológico de Tijuana |
Luis N. Coria | Instituto Tecnológico de Tijuana |
Ramón Ramírez-Villalobos | Instituto Tecnológico de Tijuana |
https://doi.org/10.58571/CNCA.AMCA.2022.033
Resumen: This work is devoted to presenting a second-order sliding mode control for speed regulation and tracking for a surface-mounted permanent magnet synchronous motor. We tune the conventional PI controllers using the field-oriented control scheme. On the other hand, we design a generalized super-twisting sliding mode control, improving the performance characteristics when the machine is under the effects of external torque. Finally, a high-precision emulator is used to validate the theoretical results.
¿Cómo citar?
Aldrete-Maldonado, C., Hernández Pastrana, J., Coria, L. & Ramírez-Villalobos, R. Super-twisting control design of speed regulation and tracking for a surface-mounted PMSM. Memorias del Congreso Nacional de Control Automático, pp. 274-279, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.033
Palabras clave
Control de Sistemas No Lineales; Control Discontinuo (modos deslizantes)
Referencias
- Azizi Sajad, Gao Peng, O.H.M.L. (2019). A sliding mode control with nonlinear fractional order pid sliding surface for the speed operation of surface-mounted pmsm drives based on an extended state observer. Mathematical Problems in Engineering, 2019. doi:https://doi.org/10.1155/2019/7130232.
- Campos, P., Coria, L., and Trujillo, L. (2018). Nonlinear speed sensorless control of a surface-mounted pmsm based on a thau observer. Electrical Engineering, 100. doi:10.1007/s00202-016-0491-1.
- Castillo, I., Fridman, L., and Moreno, J.A. (2018). Super-twisting algorithm in presence of time and state dependent perturbations. International Journal of Control, 91(11), 2535–2548. doi:10.1080/00207179.2016.1269952. URL https://doi.org/10.1080/00207179.2016.1269952.
- Hu, T. and Zhang, X. (2019). Simulation of pmsm vector control system based on fuzzy pi controller. In 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 111–114. doi:10.1109/ICPICS47731.2019.8942439.
- Junejo, A.K., Xu, W., Mu, C., Ismail, M.M., and Liu, Y. (2020). Adaptive speed control of pmsm drive System based a new sliding-mode reaching law. IEEE Transactions on Power Electronics, 35(11), 12110–12121. doi: 10.1109/TPEL.2020.2986893.
- Kashif, M., Murshid, S., and Singh, B. (2018). Super twisting smc based speed sensorless pmsm driven solar pv water pumping system. In 2018 8th IEEE India International Conference on Power Electronics (IICPE), 1–6. doi:10.1109/IICPE.2018.8709562.
- Krishnan, R. (2017). Permanent Magnet Synchronous and Brushless DC Motor Drives. CRC Press.
- Liu Xudong, Y.H. (2021). Continuous adaptive integral-type sliding mode control based on disturbance observer for pmsm drives. Springer Nonlinear Dynamics, 104(2), 1429–14414. doi: https://doi.org/10.1007/s11071-021-06360-z.
- Lu, E., Li, W., Wang, S., Zhang, W., and Luo, C. (2021). Disturbance rejection control for pmsm using integral sliding mode based composite nonlinear feedback control with load observer. ISA transactions.
- Merabet, A. (2019). Cascade second order sliding mode control for permanent magnet synchronous motor drive. Electronics, 8(12). doi:10.3390/electronics8121508. URL https://www.mdpi.com/2079-9292/8/12/1508.
- Mondragón, F.M. (2018). Control de Motores Síncronos de Imanes Permanentes (PMSM) Utilizando el Enfoque de Control por Orientaci´on de Campo (FOC). Ph.D. thesis, Universidad Autonoma de Queretaro.
- Moreno, J.A. (2009). A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. doi:10.1109/ICEEE.2009.5393477.
- Pérez-Ventura, U. and Fridman, L. (2019). When is it reasonable to implement the discontinuous slidingmode controllers instead of the continuous ones? Frequency domain criteria. International Journal of Robust and Nonlinear Control, 29(3), 810–828. doi:https://doi.org/10.1002/rnc.4347.
- Shtessel, Y., Edwards, C., Fridman, L., and Levant, A. (2014). Sliding mode control and observation. Springer New York. doi:10.1007/978-0-8176-4893-0. Publisher Copyright: Springer Science+Business Media New York 2014. All rights reserved.
- Singh, A.K., Raja, R., Sebastian, T., and Ali, A. (2019). Limitations of the pi control with respect to parameter variation in pmsm motor drive systems. In 2019 IEEE International Electric Machines and Drives Conference (IEMDC), 1688–1693. doi: 10.1109/IEMDC.2019.8785406.
- Utkin, V.I. and Poznyak, A.S. (2013). Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica, 49(1), 39–47. doi:https://doi.org/10.1016/j.automatica.2012.09.008.
- Zhang, B. and Pi, Y. (2010). Velocity control of permanente magnet synchronous motor based on secondorder sliding-mode technology. In 2010 International Conference on Digital Manufacturing and Automation, volume 2, 893–897. doi:10.1109/ICDMA.2010.124.
- Zhang, B. and Pi, Y. (2012). Hybrid first and second order sliding mode control for permanent magnet synchronous motor. In 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 1000–1004. doi:10.1109/AIM.2012.6265875.
- Zhang, G., Wang, G., Zhao, N., and Xu, D. (2022). Permanent Magnet Synchronous Motor Drives for Gearless Traction Elevators. Springer Singapore.
- Zhou, Z., Zhang, B., and Mao, D. (2018). Robust sliding mode control of pmsm based on rapid nonlinear tracking differentiator and disturbance observer. Sensors, 18(4). doi:10.3390/s18041031. URL https://www.mdpi.com/1424-8220/18/4/1031.