Gutiérrez, Diego | Universidad Nacional Autónoma De México |
Mercado Uribe, Jose Angel | Universidad Nacional Autónoma De México |
Moreno, Jaime A. | Universidad Nacional Autónoma De México |
Fridman, Leonid M. | Universidad Nacional Autónoma De México |
Resumen: En este trabajo, se diseña un control integral discontinuo de tercer orden para realizar robustamente, el textit{swing-up} y la estabilización en tiempo finito de la posición de arriba del sistema de Péndulo de Rueda Inercial (RWP de sus siglas en inglés), a pesar de la presencia de incertidumbres y perturbaciones no desvanecientes. El algoritmo de control produce una señal de control continua, reduciendo el efecto de textit{chattering} usual en los controles por modos deslizantes. Los resultados teóricos del artículo se verifican experimentalmente en el sistema real.
¿Cómo citar?
Diego Guti´errez-Oribio, Angel Mercado-Uribe, Jaime A. Moreno & Leonid Fridman. Swing-Up y Estabilización en un Solo Paso del Péndulo de Rueda Inercial Usando Control Integral Discontinuo. Memorias del Congreso Nacional de Control Automático, pp. 754-759, 2019.
Palabras clave
Control discontinuo (modos deslizantes), Control robusto, Control de Sistemas No Lineales
Referencias
- Andrievsky, B.R. (2011). Global stabilization of the unstable reaction-wheel pendulum. Automation and Remote Control 72(9), 1981–1993.
- Aström, K.J. y K. Furuta (2000). Swinging up a pendulum by energy control. Automatica 36, 287–295. Baccioti, A. y L. Rosier (2005). Lyapunov functions and stability in control theory. Springer-Verlag, 2nd ed.. New York.
- Chalanga, A., S. Kamal y B. Bandyopadhyay (2013). Continuous integral sliding mode control: A chattering free approach. In: IEEE International Symposium on Industrial Electronics. Taipei, Taiwan.
- Cruz-Zavala, E. y J.A. Moreno (2017). Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80, 232–238.
- Edwards, C. y Y.B. Shtessel (2016). Adaptive continuous higher order sliding mode control. Automatica 65, 183– 190.
- Gutierrez-Oribio, D., A. Mercado-Uribe, J.A. Moreno y L. Fridman (2018). Stabilization of the reaction wheel pendulum via a thir order discontinuous integral sliding mode algorithm. In: 16th International workshop on Variable Structure Systems. Graz, Austria.
- Iriarte, R., L.T. Aguilar y L. Fridman (2013). Second order sliding mode tracking controller for inertia wheel pendulum. Journal of the Franklin Institute 350, 92– 106.
- Laghrouche, S., M. Harmouche y Y. Chitour (2017). Higher order super-twisting for perturbed chains of integrators. IEEE Transactions on Automatic Control 62(7), 3588–3593.
- Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58 pp. 1247–1263.
- Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384.
- Levant, A. (2005). Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830.
- Levant, A. (2008). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control 76(9/10), 924–941.
- Mendoza-Avila, J., J.A. Moreno y L. Fridman (2017). An ´ idea for lyapunov function design for arbitrary order continuous twisting algorithm. In: IEEE 56th Annual Conference on Decision and Control. Melbourne, Australia.
- Moreno, J.A. (2016). Discontinuous integral control for mechanical systems. In: International Workshop on Variable Structure Systems. Nanjing, China.
- Moreno, J.A. (2018). Discontinuous Integral Control for Systems with relative degree two. Chapter 8 In: Julio Clempner, Wen Yu (Eds.), New Perspectives and Applications of Modern Control Theory; in Honor of Alexander S. Poznyak.. Springer International Publishing.
- Moreno-Valenzuela, J. y C. Aguilar-Avelar (2017). Motion Control of Underactuated Mechanical Systems. Springer. Mexico.
- Olfati-Saber, R. (2001). Global stabilization of a flat underactuated system: The inertia wheel pendulum. In: 40th IEEE Conference on Decision and Control. Florida, USA.
- Ortega, R., M.W. Spong, F. Gomez-Estern y G. Blankenstein (2002). Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control 47(8), 1218–1233.
- Ryalat, M. y D.S. Laila (2016). A simplified ida-pbc design for underactuated mechanical systems with applications. European Journal of Control 27, 1–16.
- Seeber, R. y M. Horn (2017). Stability proof for a wellestablished super-twisting parameter setting. Automatica 84, 241–243.
- Spong, M.W., P. Corke y R. Lozano (2001). Nonlinear control of the reaction wheel pendulum. Automatica 37, 1845–1851.
- Spong, M.W. y M. Vidyasagar (1989). Robot dynamics and control. Wiley. New York.
- Srinivas, K.N. y L. Behera (2008). Swing-up control strategies for a reaction wheel pendulum. International Journal of Systems Science 39(12), 1165–1177.
- Torres-González, V., T. Sánchez, L. Fridman y J.A. Moreno (2017). Design of continuous twisting algorithm. Automatica 80, 119–126.
- Ye, H., G.P. Liu, C. Yang y W. Gui (2008). Stabilisation designs for the inertia wheel pendulum using saturation techniques. International Journal of Systems Science 39(12), 1203–1214.