S. Sánchez, Allan G. | Univ. Autónoma De Nuevo León |
Cortés-Preciado, Alfredo Daniel | Univ. Autónoma De Nuevo León |
Platas-Garza, Miguel Angel | Univ. Autónoma De Nuevo León |
Loya-Cabrera, Alejandro Eutimio | Univ. Autónoma De Nuevo León |
Elizondo Gonzalez, Cesar | Univ. Autónoma De Nuevo León |
Posadas-Castillo, Cornelio | Univ. Autónoma De Nuevo León |
Resumen: In this paper synchronization of a small–world network composed of Cellular Neural Networks (CNN) is addressed. Each nonlinear system used to compose the network is the standard CNN. Such model will be used as generator of chaotic behavior. The resulting small–world network will be created with Newman–Watts algorithm and synchronized by using the coupling matrix technique. On the other hand, secret communications, that includes a suitable selection of the chaotic signal as improvement of the security level, are evaluated as potential application. Criteria considering energy and frequency characteristics are used to choose the chaotic signal that best hides the message. Numerical simulations of the encryption, transmission and retrieval of a message are provided to corroborate the effectiveness of the procedure.
¿Cómo citar?
A.G. Soriano–Sánchez, A.D. Cortés–Preciado, M.A. Platas–Garza A.E. Loya–Cabrera C. Elizondo–González & C. Posadas–Castillo. Synchronization of CNNs Arranged in Small–world Topology and Signal Selection for a Suitable Chaotic Encryption (I). Memorias del Congreso Nacional de Control Automático, pp. 564-569, 2018.
Palabras clave
Synchronization, chaotic CNN, small–world property, complex network, encryption, secret communications
Referencias
- Arellano-Delgado, A., López- Gutiérrez, R., Cruz Hernández, C., Posadas-Castillo, C., Cardoza Avendano, L., and Serrano-Guerrero, H. (2013). Experimental network synchronization via plastic optical fiber. Opt. Fiber Technol., 19(2), 93–108.
- Barrat, A. and Weigt, M. (2000). On the properties of small–world network models. Eur. Phys. J. B, 13, 547– 560.
- Bhat, L. and Sudha, K.L. (2012). Performance analysis of chaotic DS–CDMA with CSK modulation. Int. J. Adv. Eng. Res. Stud., 1(3), 133–136.
- Bhaumik, H. and Santra, S. (2017). Stochastic sandpile model on small-world networks: scaling and crossover. arXiv preprint arXiv:1710.08741.
- Chen, X., Park, J.H., Cao, J., and Qiu, J. (2017). Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput., 308, 161–173.
- Chua, L.O., Komuro, M., and Matsumoto, T. (1986). The Double Scroll Family. IEEE Trans. Circuits Syst., 11, 1072–1118.
- Chua, L.O. and Yang, L. (1998). Cellular Neural Networks: Theory and applications. IEEE Trans. Circuits Syst., 35, 1257–1290.
- Dachselt, F. and Schwarz, W. (2001). Chaos and cryptography. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl., 48, 1498–1509.
- He, J. and Xue, Y. (2018). Scale-free and small-world properties of hollow cube networks. Chaos, Solitons Fract., 113, 11–15.
- Lorenz, E.N. (1963). Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–141.
- Newman, M.E.J. and Watts, D.J. (1999a). Renormalization group analysis of the small–world network model. Phys. Lett. A, 263, 341–346.
- Newman, M.E.J. and Watts, D.J. (1999b). Scaling and percolation in the small–world network model. Phys. Rev. E, 60, 7332–7342.
- Pecora, L.M. and Carroll, T.L. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64, 821–824.
- Petras, I. (2008). A note on the fractional–order Chua’s system. Chaos, Soliton Fract., 38, 140–147.
- Soriano-Sánchez, A.G., Posadas-Castillo, C., Platas Garza, M.A., Cruz-Hernández, C., and López- Gutiérrez, R.M. (2016a). Coupling strength computation for chaotic synchronization of complex networks with multi–scroll attractors. Appl. Math. Comput., 275, 305– 316.
- Soriano-Sánchez, A.G., Posadas-Castillo, C., Platas Garza, M.A., and Diaz-Romero, D.A. (2015). Performance improvement of chaotic encryption via energy and frequency location criteria. Math. Comput. Simul., 112, 14–27.
- Soriano-Sánchez, A.G., Posadas-Castillo, C., Platas Garza, M.A., and Diaz-Romero, D.A. (2015). Performance improvement of chaotic encryption via energy and frequency location criteria. Math. Comput. Simul., 112, 14–27.
- Soriano-Sánchez, A.G., Posadas-Castillo, C., Platas Garza, M.A., and Elizondo-González, C. (2016b). Chaotic synchronization of cnns in small–world topology applied to data encryption. In Advances and Applications in Chaotic Systems, 337–362. Springer.
- Soriano-Sánchez, A. and Posadas-Castillo, C. (2018). Smart pattern to generate small–world networks. Chaos, Solitons Fract., 114, 415–422.
- Wang, M.J., Wang, X.Y., and Pei, B.N. (2012). A new digital communication scheme based on chaotic modulation. Nonlinear Dyn., 67(2), 1097–1104.
- Wang, X.F. (2002). Complex Networks: Topology, Dynamics and Synchronization. Int. J. Bifurc. Chaos, 12(5), 885–916.
- Wang, X.F. and Chen, G. (2002a). Synchronization in small–world dynamical networks. Int. J. Bifurc. Chaos, 12(1), 187–192.
- Wang, X.F. and Chen, G. (2002b). Synchronization in small–world dynamical networks. Int. J. Bifurc. Chaos, 12(1), 187–192.
- Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of small–world networks. Nature, 393, 440–442.
- Yalcin, M.E. (2007). Multi–scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos, Soliton Fract., 34, 1659–1666.
- Yalcin, M.E., Suykens, J.A.K., and Vandewalle, J.P.L. (eds.) (2004). Cellular Neural Networks, Multi–Scroll Chaos and Synchronization, volume 50 of Serie A. World Scientific, Singapore.
- Yang, H. and Jiang, G.P. (2012). High–Efficiency Differential–Chaos–Shift–Keying Scheme for Chaos– Based Noncoherent Communication. IEEE Trans. Circuits Syst.–II: Express Briefs, 59(5), 312–316.
- Yang, H., Wang, X., Zhong, S., and Shu, L. (2018). Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control. Appl. Math. Comput., 320, 75–85.
- Yang, W. and Sun, J. (2010). Function projective synchronization of two-cell quantum-CNN chaotic oscillators by nonlinear adaptive controller. Phys. Lett. A, 374(4), 557–561.
- Zhang, Z.M., He, Y., Wu, M., and Wang, Q.G. (2017). Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach. Appl. Math. Comput., 314, 121–132.
- Zou, F. and Nossek, J.A. (1991). A Chaotic Attractor with Cellular Neural Networks. IEEE Trans. Circuits Syst., 38(7), 811–812.