Illiani Carro-Pérez | IPICYT |
Juan Gonzalo | IPICYT |
Barajas-Ramírez | IPICYT |
https://doi.org/10.58571/CNCA.AMCA.2022.090
Resumen: An ideal memristor is a device whose resistive memory value is determine by its initial conditions and the voltage that has been applied across its terminals. As such, it is a good candidate to model the textit{synaptic plasticity} of neural systems. When memristors are included in neural models, they are called memristive neural networks. In this contribution, we investigate the emergence of synchronization in an array of two identical Hindmarsh-Rose neurons bidirectionally coupled through their voltage variables via memristors. We show that, for a sufficiently large positive memductance, synchronization emerges between neurons while the memristors converge to constant synaptic weight values. We illustrate our results with numerical simulations.
¿Cómo citar?
Illiani Carro-Pérez, Juan Gonzalo & Barajas-Ramírez. Synchronization of memristor based bidirectionally coupled Hindmarsh-Rose neurons. Memorias del Congreso Nacional de Control Automático, pp. 516-521, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.090
Palabras clave
Sincronización de Sistemas; Redes Neuronales; Control de Sistemas No Lineales
Referencias
- L. Hodgkin, A. F. Huxley, B. Katz “Ionic currents underlying activity in the giant axon of the squid,” Arch. Sci. Physiologiques, 3, 129–150, 1949.
- J.L. Hindmarsh, R.M. Rose. A model of neunoral bursting using 3 coupled 1st order differential-equations, Proc. R. Soc. Lond. B, 221(1222),87-102,1984.
- E.R. Kandel, T.M. Jessell, J.H. Schwartz, S.A. Siegelbaum, A.J. Hudspeth Principles of Neural Science, McGraw-Hill, 2013.
- Serrat, B. Graham, A. Gillies, D. Willshaw Principles of ComputationalModeling in Neuroscience Cambridge University Press, 2011.
- Amirsoleimani, M. Ahmadi, A. Ahmadi, M. Boukadoum. Pattern classification with memristive neural network using the Hodgkin-Huxley neuron IEEE Int. Conf. on Electron. Circuits and Syst. ICECS, 81-84,2016.
- Pershin, M. Di Ventra. Experimental demonstration of associative memory with memristive neural networks Nat Prec, 2009.
- Nishitani, Y. Kaneko, M. Ueda. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses IEEE Trans Neural Netw Learn Syst,26(12),2999-3008, 2015.
- Li, B. Luo, D. Liu, Y. Yang and Z. Yang. Robust Exponential Synchronization forMemristor Neural Networks
- With Nonidentical Characteristics by Pinning Control IEEE Trans. Syst. Man Cybern.: Syst.,51(3),1966-1980, 2021.
- Sanchez-Lopez, V.H. Carbajal-Gomez, M.A. Carrasco-Aguilar PID controller design based on memductor AEU – Int. J. Electron, 101,9-11, 2019.
- Carro-Perez, C. Sánchez -López, H.G. Gonzalez-Hernandez, PID controller design based on memductor AEU- Int. J. Electron, 101,9-11, 2019.
- Innocenti, A. Morelli, R. Genesio, A. Torcini Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos, Chaos,17(4), 2007.
- O. Chua Memristor-The missing circuit element, IEEE Trans. Circuits Theo., 18(5), 507-519, 1971.
- Itoh , L. O. Chua Memristor Oscillators, Int. J. Bifurc. Chaos, 18(5), 18(11),3183-3206.
- Purves, G. Augustine, D. Fitzpatrick, W. C. Hall, A. LaMantia, R. Mooney, L. E White. Neuroscience, Sinauer, EE. UU.,2018
- H.K. Khalil. Nonlinear Systems, Prentice Hall, 2002.
- Sanchez-Lopez, J. Mendoza-Lopez, M.A. Carrasco-Aguilar, C. Muñiz -Montero A Floating Analog emristor
- Emulator Circuit, IEEE Trans. Circuits Sys. II: Express Br., 61(5), 309-313, 2014.