Galicia Galicia, Laura Adriana | Tecnológico Nacional de México |
Hernandez Gonzalez, Omar | Tecnológico Nacional de México, Hermosillo |
Garcia Beltran, Carlos Daniel | Tecnológico Nacional de México |
Guerrero-Sánchez, María-Eusebia | Tecnológico Nacional de México, Hermosillo |
Castro Gómez, José Fernando | Tecnológico Nacional de México, Hermosillo |
Valencia-Palomo, Guillermo | Tecnológico Nacional de México, Hermosillo |
https://doi.org/10.58571/CNCA.AMCA.2024.025
Resumen: This paper presents an estimation algorithm based on a synchronized observer, using homogeneous sensor fusion for a linear system in the presence of multiple sampling periods, whether periodic or aperiodic. This allows for the fusion of a single continuoustime estimation applied in a vertical building-like structure. Additionally, the multisensors are affected by different measurement noises. The designed algorithm is validated on a two-story vertical building structure with multisensors that have different sampling rates and significantly large sampling intervals for the system, aiming to reduce the effects of noisy signals. The effects of multiple sampling and noise are very real issues in monitoring systems.
¿Cómo citar?
Galicia Galicia, L.A., Hernandez Gonzalez, O., Garcia Beltran, C.D., Guerrero Sánchez, M.E., Castro Gómez, J.F. & Valencia Palomo, G. (2024). Synchronized estimation of displacement in a structure using multi-sensors under different sampling periods. Memorias del Congreso Nacional de Control Automático 2024, pp. 144-149. https://doi.org/10.58571/CNCA.AMCA.2024.025
Palabras clave
Multi-sensors, Fusion, Synchronized observer, Multiple samplings
Referencias
- Chen, G., Liu, Z., Yu, G., and Liang, J. (2021). A new view of multisensor data fusion: research on generalized fusion. Mathematical Problems in Engineering, 2021, 1–21.
- Chávez-Moreno, R., Tang, Y., Hernández, J.C., and Ji, H. (2018). Contracting angular velocity observer for small satellites. IEEE Transactions on Aerospace and Electronic Systems, 54(6), 2762–2775.
- Concha, A., Alvarez-Icaza, L., and Garrido, R. (2017). Observador adaptable para edificios basado en proyección paramétrica. In Memorias del XVI Congreso Latinoamericano de Control Automático.
- Dong, J., Zhuang, D., Huang, Y., and Fu, J. (2009). Advances in multi-sensor data fusion: Algorithms and applications. Sensors, 9(10), 7771–7784.
Elmenreich, W. (2001). An introduction to sensor fusion. - Galaz-Palma, R., Targui, B., Hernández-González, O., Valencia-Palomo, G., Espinoza-Molina, A., and Guerrero-Sánchez, M.E. (2023). Robust observer for input and state estimation in building structure systems. Journal of Vibration and Control, 29(19-20), 4422–4438.
- Gao, B., Hu, G., Gao, S., Zhong, Y., and Gu, C. (2018). Multi-sensor optimal data fusion based on the adaptive fading unscented kalman filter. Sensors, 18(2).
- Grave, I. and Tang, Y. (2015). A new observer for perspective vision systems under noisy measurements. IEEE Transactions on Automatic Control, 60(2), 503– 508.
- Hall, D.L. and Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6–23.
- Karaked, P., Saengphet, W., and Tantrairatn, S. (2022). Multi-sensor fusion with extended kalman filter for indoor localization system of multirotor uav. In 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1–5.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.
- Li, W. and Fu, Z. (2018). Unmanned aerial vehicle positioning based on multi-sensor information fusion. Geo-Spatial Information Science, 21(4), 302–310.
- Liu, K., Li, Y., Xu, N., and Natarajan, P. (2018). Learn to combine modalities in multimodal deep learning. arXiv preprint arXiv:1805.11730.
- Ma, K., Zhang, H., Wang, R., and Zhang, Z. (2017). Target tracking system for multi-sensor data fusion. In 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1768–1772.
- Morales-Valdez, J., Alvarez-Icaza, L., and Concha, A. (2017). Observador adaptable para edificios bajo el enfoque de propagación de ondas. In Memorias del Congreso Nacional de Control Automático.
- Pérez, J., Tang, Y., and Grave, I. (2018). Nonlinear observers for a class of neuronal oscillators in the presence of strong measurement noise. In Advances in Neural Networks–ISNN 2018: 15th International Symposium on Neural Networks, ISNN 2018, Minsk, Belarus, June 25–28, 2018, Proceedings 15, 736–744. Springer.
- Ramírez-Rasgado, F., Hernández-González, O., Farza, M., M’Saad, M., Astorga-Zaragoza, C., and Dahhou, B. (2022). On high-gain observer redesign with respect to the nature of the available outputs. In 2022 10th International Conference on Systems and Control (ICSC), 190–195.
- Rodriguez-Torres, A., Morales-Valdez, J., and Yu, W. (2021). Alternative tuning method for proportional-derived gains for active vibration control in a building structure. Transactions of the Institute of Measurement and Control, 01423312211021052.
- Samaras, S., Diamantidou, E., Ataloglou, D., Sakellariou, N., Vafeiadis, A., Magoulianitis, V., Lalas, A., Dimou, A., Zarpalas, D., Votis, K., et al. (2019). Deep learning on multi sensor data for counter uav applications—a systematic review. Sensors, 19(22), 4837.
- Tang, Y., Ji, H., and Wang, X. (2019). Multi-sensor observer designs for a class of nonlinear systems. In 2019 IEEE 15th International Conference on Control and Automation (ICCA), 1296–1301. IEEE.
- You, W., Li, F., Liao, L., and Huang, M. (2020). Data fusion of uwb and imu based on unscented kalman filter for indoor localization of quadrotor uav. IEEE Access, 8, 64971–64981.