Palafox, Carlos | Inst. Tecnológico De Sonora |
Penaloza, Ollin | Inst. Tecnológico De Sonora |
Alvarez, Jaime | CINVESTAV |
Resumen: En este trabajo se considera la teleoperación de un robot móvil tipo uniciclo mediante un mecanismo maestro de dos grados de libertad. Particularmente se presenta una estrategia de control que resuelve el problema de condiciones iniciales distintas de posición. Con el fin de lograr la sincronización, el diseño considera tanto el modelo cinemático de postura del móvil como los modelos dinámicos de los mecanismos. Simulaciones numéricas se proporcionan para ilustrar el desempeño del sistema.
Total descargados hasta ahora
193 Downloads
¿Cómo citar?
Carlos Palafox, Ollin Peñaloza & Jaime Alvarez. Teleoperación Bilateral de un Robot Móvil Tipo Uniciclo. Memorias del Congreso Nacional de Control Automático, pp. 341-346, 2018.
Palabras clave
Teleoperación, robot móvil, pasividad
Referencias
- Arcara, P. and Melchiorri, C. (2002). Control schemes for teleoperation with time delay: A comparative study. Robotics and Autonomous Systems, 38, 49–64.
- Caudas de Wit, C., Siciliano, B., and Bastin, G. (1996). Theory of robot control. Springer, London, UK.
- Fierro, R. and Lewis, F. (1997). Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. Journal of Robotics Systems, 14(3), 149–163.
- Hokayem, P. and Spong, M. (2006). Bilateral teleoperation: an historical survey. Automatica, 42, 2035–2057.
- Hua, C. and Liu, X. (2010). Delay-dependent stability criteria of teleoperation systems with asymmetric timevarying delays. IEEE Transactions on Robotics, 26(5), 925–932.
- Kelly, R., Santibáñez, V., and Lor´ıa, A. (2005). Control of robot manipulators in joint space. Springer-Verlag.
- Lee, D., Martinez-Palafox, O., and Spong, M. (2006). Bilateral teleoperation of a wheeled mobile robot over delayed communication network. In Proc. of the IEEE International Conference on Robotics and Automation, 3298–3303. Orlando, Florida.
- Lee, D. and Xu, D. (2011). Feedback r-passivity of lagrangian systems for mobile robot teleoperation. In Proc. of the IEEE International Conference on Robotics and Automation, 2118–2123. Shanghai, China.
- Ma, L. and Schilling, K. (2007). Survey on bilateral teleoperation of mobile robots. In Proc. of the IASTED International Conference on Robotics and Applications, 489–494. Wurzburg, Germany.
- Nuño, E., Ortega, R., Barabanov, N., and Basáñez, L. (2008). A globally stable pd controller for bilateral teleoperators. IEEE Transactions on Robotics, 24(3), 753–758.
- Quanser User’s Manual (2012). IP02 Linear Inverted Pendulum and IP02 Linear Pendulum Gantry Experiments: Set Up and Configuration. Quanser Inc., Ontario, Canada.
- Slawinski, E., García, S., Salinas, L., and Mut, V. (2016a). PD-like controller with impedance for delayed bilateral teleoperation of mobile robots. Robotica, 34(9), 2151– 2161.
- Slawinski, E., Mut, V., and Postigo, J. (2007). Teleoperation of mobile robots with time-varying delay. IEEE Transactions on Robotics, 23(5), 1071–1082.
- Slawinski, E., Mut, V., and Santiago, D. (2016b). PD-like controller for delayed bilateral teleoperation of wheeled robots. International Journal of Control, 89(8), 1622– 1631.
- Slotine, J. and Li, W. (1991). Applied nonlinear control. Prentice-Hall.
- Spong, M., Hutchinson, S., and Vidyasagar, M. (2006). Control of robot manipulators in joint space. John Wiley & Sons.
- van der Schaft, A. (2017). L2-gain and passivity techniques in nonlinear control. Springer.
- Varkonyi, T., Rudas, I., Pausits, P., and Haidegger, T. (2014). Survey on the control of time delay teleoperation systems. In Proc. of the IEEE International Conference on Intelligent Engineering Systems, 89–94. Tihany, Hungary.
- Xu, Z., Ma, L., and Schilling, K. (2009). Passive bilateral teleoperation of a car-like mobile robot. In Proc. of the Mediterranean Conference on Control and Automation, 790–796. Thessaloniki, Greece.
- Zhang, B., Kruszewski, A., and Richard, J. (2014). A novel control design for delayed teleoperation based on delay-scheduled lyapunov-krasovskii functionals. International Journal of Control, 87(8), 1694–1706.