Lizeth Torres | Universidad Nacional Autónoma de México |
Roberto G. Ramírez-Chavarría | Universidad Nacional Autónoma de México |
Martín R. Jiménez-Magaña | Universidad Nacional Autónoma de México |
Lucero F. García-Franco | Universidad Autónoma Metropolitana |
https://doi.org/10.58571/CNCA.AMCA.2022.075
Resumen: This article presents a text mining methodology that is used in the framework of a project called Fugometría. The objective of the proposed methodology is the construction of maps with markers that indicate the location of water leaks. To achieve this purpose, the initial step is the collection of tweets issued by citizens to report the existence of leaks in drinking water distribution networks. Once these tweets are collected, they are parsed for an address in the body of the message. If an address is detected, it is converted into a GPS coordinate, which is in turn used to build a map with markers indicating the location of water leaks. In order to show the applicability of the methodology, some preliminary results on the construction of a leak map of Mexico City are shown.
¿Cómo citar?
Torres, L., Ramírez-Chavarría, R., Jiménez-Magaña, M. & García-Franco, L. Text Mining Methodology for Building Water Leak Maps from Tweets. Memorias del Congreso Nacional de Control Automático, pp. 522-526, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.075
Palabras clave
Detección y Aislamiento de Fallas; Sistemas Económicos y Sociales; Otros Tópicos Afines
Referencias
- Aleks (2021). Convertir direcciones a coordenadas de latitud y longitud con google sheets y google maps (geocoding). URL https://bit.ly/3RRa0u0.
- de Bruijn, J.A., de Moel, H., Jongman, B., de Ruiter, M.C., Wagemaker, J., y Aerts, J.C. (2019). A global database of historic and real-time flood events based on social media. Scientific data, 6(1), 1–12.
- Gerber, M.S. (2014). Predicting crime using twitter and kernel density estimation. Decision Support Systems, 61, 115–125.
- Jiang, J.Y., Zhou, Y., Chen, X., Jhou, Y.R., Zhao, L., Liu, S., Yang, P.C., Ahmar, J., y Wang, W. (2022).
- Covid-19 surveiller: toward a robust and effective pandemic surveillance system based on social media mining. Philosophical Transactions of the Royal Society A, 380(2214), 20210125.
- Khanwalkar, S., Seldin, M., Srivastava, A., Kumar, A., y Colbath, S. (2013). Content-based geo-location detection for placing tweets pertaining to trending news on map. En The Fourth International Workshop on Mining Ubiquitous and Social Environments, 37. Citeseer.
- Ralston, M.R., O’Neill, S., Wigmore, S.J., y Harrison, E.M. (2014). An exploration of the use of social media by surgical colleges. International Journal of Surgery, 12(12), 1420–1427.
- Sakaki, T., Okazaki, M., y Matsuo, Y. (2010). Earthquake shakes twitter users: real-time event detection by social sensors. En Proceedings of the 19th international conference on World wide web, 851–860.
- Sarker, A., O’connor, K., Ginn, R., Scotch, M., Smith, K., Malone, D., y Gonzalez, G. (2016). Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from twitter. Drug safety, 39(3), 231–240.
- Statista (2022). Número de usuarios de twitter en algunos países de américa latina en enero de 2022. URL https://es.statista.com/
- Yoon, S., Elhadad, N., y Bakken, S. (2013). A practical approach for content mining of tweets. American journal of preventive medicine, 45(1), 122–129.