Rubio-Pecasso J. | Baja California Autonomous University |
Arellano-Delgado A. | Baja California Autonomous University |
López-Gutiérrez R.M. | Baja California Autonomous University |
Cruz-Hernández C. | Electronics and Telecommunications Department Scientific Research and Advanced Studies Center of Ensenada |
https://doi.org/10.58571/CNCA.AMCA.2022.082
Resumen: In this work, a trajectory-tracking scheme is proposed by using a backstepping control with a dynamic coupling used as an intermediary system of quadcopters in a master-salve configuration. The desired trajectories for the master quadcopter are conventional, concentric and chaotic trajectories. By means of a proper mathematical analysis and extensive numerical simulations, we show the correct performance of proposed scheme presented.
¿Cómo citar?
Rubio-Pecasso J., Arellano-Delgado A., López-Gutiérrez R.M. & Cruz-Hernández C. Trajectory tracking and formation of quadrotors using a backstepping control and coupling with intermediary system. Memorias del Congreso Nacional de Control Automático, pp. 486-491, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.082
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica; Sincronización de Sistemas
Referencias
- Abdul-Wahid A. Saif, Mujahid Dhaifullah, Mohammad Al-Malki & Mustafa El Shafie (2012). Modified Backstepping Control of Quadrotor. IEEE. No. 12726672. https://ieeexplore.ieee.org/abstract/document/6197975
- Akhilesh S. (2014). Comparison of Quadrotor Performance Using Backstepping and Sliding Mode Control. International Conference on Circuits, Systems and Control. pp. 79-82, ISBN: 978-1-61804-216-3.
- Sahul M.P.V, V. Naveen C., and Thomas K. (2014). A novel method on Disturbance Rejection PID Controller for Quadcopter based on Optimization algorithm. Third International Conference on Advances in Control and Optimization of Dynamical Systems. pp. 192-199, 10.3182/20140313-3-IN-3024.00016. Recuperado el 13 de octubre del 2020, de: https://pdf.sciencedirectassets.com/314898.
- Nguyen Xuan-Mung, Sung Kyung-Hong. (2019). Robust adaptive formation control of quadcopters based on leaderfollower approach. International Journal of Advanced Robotic Systems. Volume 16, Issue 4, doi: 1729881419862733. Recuperado el 13 de octubre del 2020, de: https://journals.sagepub.com/doi/full/10.1177/1729881419862733
- Martínez C. (2014). Diseño de un controlador para la formación de grupos de robots móviles. Centro de Investigación Científica y Estudios Superiores de Ensenada Pena Ramírez, J., Arellano-Delgado, A., y Nijmeijer, H. (2018). Enhancing master-slave synchronization: The effect of using a dynamic coupling. Physical Review E, 98(1): 1–10.
- Pliego-Jiménez, J., Martínez-Clark, R., Cruz-Hernández, C., Arellano-Delgado, A. (2021). Trajectory tracking of wheeled mobile robots using only Cartesian position measurements. Automática, 2021, 133, 109756. https://www.sciencedirect.com/science/article/abs/pii/S0005109821002764
- Muslimov TZ, Munasypov RA. (2020). Adaptive decentralized flocking control of multi-UAV circular formations based on vector fields and backstepping. ISA Trans. 2020 Dec;107:143-159. doi: 10.1016/j.isatra.2020.08.011. Epub 2020 Aug 21. PMID: 32863052. Recuperado el 13 de octubre del 2020, de: https://pubmed.ncbi.nlm.nih.gov/32863052/