López Cancino, Luis Daniel | Tecnológico Nacional de México, Tuxtla Gutiérrez |
Luna, Moises | Tecnológico Nacional de México, Tuxtla Gutiérrez |
Gómez-Peñate, Samuel | Tecnológico Nacional de México, Tuxtla Gutiérrez |
De los Santos Ruiz, Ildeberto | Tecnológico Nacional de México, Tuxtla Gutiérrez |
Molina-Domínguez, Saúl De Jesús | Tecnológico Nacional de México, Tuxtla Gutiérrez |
https://doi.org/10.58571/CNCA.AMCA.2024.082
Resumen: This article presents a trajectory tracking robust control for a mobile robot with Mecanum wheels. Using the sliding mode technique, a controller is developed to ensure robustness against unknown uncertainties, providing stable convergence. For stability onditions, the direct Lyapunov method is used, which guarantees the asymptotic convergence of the system. Finally, the results are evaluated at the simulation level using the nonlinear model and ROS2 in the Gazebo environment.
¿Cómo citar?
López Cancino, L., Luna Aguilar, M., Gómez Peñate, S., Santos Ruiz, I. & Molina Dominguez, S. (2024). Trajectory Tracking Control of a Mecanum-Wheeled Omnidirectional Mobile Robot Implemented in ROS-Gazebo. Memorias del Congreso Nacional de Control Automático 2024, pp. 481-486. https://doi.org/10.58571/CNCA.AMCA.2024.082
Palabras clave
Omnidirectional mobile robot, Sliding mode control, Trajectory Tracking, ROS2, Gazebo
Referencias
- Alakshendra, V. and Chiddarwar, S.S. (2017). Adaptive robust control of mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, 87, 2147–2169.
- Azar, A.T., Sardar, M.Z., Ahmed, S., Hassanien, A.E., and Kamal, N.A. (2023). Autonomous robot navigation and exploration using deep reinforcement learning with gazebo and ros. In International Conference on Advanced Intelligent Systems and Informatics, 287–299. Springer.
- Can, A., Price, J., and Montazeri, A. (2022). A nonlinear discrete-time sliding mode controller for autonomous navigation of an aerial vehicle using hector slam. IFAC-PapersOnLine, 55(10), 2653– 2658.
- Leong, J.S.L., Teo, K.T.K., and Yoong, H.P. (2022). Four wheeled mobile robots: A review. In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 1–6. IEEE.
- Li, Y., Dai, S., Zheng, Y., Tian, F., and Yan, X. (2018). Modeling and kinematics simulation of a mecanum wheel platform in recurdyn. Journal of Robotics, 2018.
- Lu, X., Zhang, X., Zhang, G., and Jia, S. (2018). Design of adaptive sliding mode controller for four-mecanum wheel mobile robot. In 2018 37th Chinese Control Conference (CCC), 3983–3987. IEEE.
- Monasterio-Huelin, F. and Gutiérrez, A. (2020). Modelado de un motor dc.
- Sabouri, M. and Asemani, M.H. (2021). Lpv controller design for trajectory tracking of nonholonomic wheeled mobile robots in the presence of slip. In 2021 29th Iranian Conference on Electrical Engineering (ICEE), 715–720. IEEE.
- Sun, Z., Hu, S., He, D., Zhu, W., Xie, H., and Zheng, J. (2021). Trajectory-tracking control of mecanum-wheeled omnidirectional mobile robots using adaptive integral terminal sliding mode. Computers & Electrical Engineering, 96, 107500.
- Wang, D., Gao, Y., Wei, W., Yu, Q., Wei, Y., Li, W., and Fana, Z. (2024). Sliding mode observer-based model predictive tracking control for mecanum-wheeled mobile robot. ISA Transactions.
- Wang, J., Han, L., Dong, X., Li, Q., and Ren, Z. (2021). Distributed sliding mode control for time-varying formation tracking of multi-uav system with a dynamic leader. Aerospace Science and Technology, 111, 106549.
- Yadav, P.S., Agrawal, V., Mohanta, J., and Ahmed, M.F. (2022). A robust sliding mode control of mecanum wheel-chair for trajectory tracking. Materials Today: Proceedings, 56, 623–630.
- Yogi, S.C., Behera, L., and Nahavandi, S. (2023). Adaptive intelligent minimum parameter singularity free sliding mode controller design for quadrotor. IEEE Transactions on Automation Science and Engineering, 21(2), 1805–1823.