Vázquez S., Luis | Universidad Tecnológica de la Mixteca |
Arias-Montiel, Manuel | Universidad Tecnológica de la Mixteca |
Adam-Medina, Manuel | National Center for Research and Technological Development |
https://doi.org/10.58571/CNCA.AMCA.2024.089
Resumen: This article describes a methodology for controller design, Youla-Kucera Parameterization is used for this purpose. The controller is designed for an electric machine, taking into account its sensitivity functions which must be stable and proper to ensure better behavior in the control loop, using a DC motor will allow us to observe the behavior of the controller in smooth and disturbances in the system. It will be possible to have a control that, in addition to making estimates of the states, will allow for a more robust control. The main steps of this resulting methodology are: mathematical design, experimentation and of course the results, which will allow the performance of the technique to be evaluated.
¿Cómo citar?
Vázquez Sanchéz, L., Arias Montiel, M. & Adam Medina, M. (2024). Trajectory Tracking of a Youla Parameterization Control for a Electric Machine. Memorias del Congreso Nacional de Control Automático 2024, pp. 524-529. https://doi.org/10.58571/CNCA.AMCA.2024.089
Palabras clave
Robust control, Youla Parameterization, Motor control, Sensitivity functions, Bezzier Trajectory
Referencias
- Castañer, R., & Peña, R. S. (2007). Control Activo de Ruido Acústico en Cascos de Motociclismo. Revista Iberoamericana de Automática e Informatica Industrial (RIAI). 4, 73–85.
- Ding, S. X., Yang, G., Zhang, P., Ding, E. L., Jeinsch, T., Weinhold, N., & Schultalbers, M. (2009). Feedback Control Structures, Embedded Residual Signals, and Feedback Control Schemes With an Integrated Residual Access. IEEE Transactions on Control Systems Technology. 18, 352–367
- Goodwin, G. C. Graebe, S. F, Salgado, M. E. (2000). Control Systems Design. Centre for Integrated Dynamics and Control University of Newcastle, 16, 405–451
- Keviczky, L., & Bányász, C. (2008). A New Iterative Procedure to Obtain H-infinity, L-infinity Optimal Regulators. The International Federation of Automatic Control, 8791–8796.
- Niemann, H. (2003). Dual Youla parameterisation. Control Theory and Applications, IEE Proceedings, 150, 5.
- Salgado, M., & Musalem, R. (2002). Alternative Youla Parameterization. Universidad Técnica Federico Santa Maria. 1–14.
- Teppa A. Pedro, (2007). Consideraciones prácticas en la conformación robusta del parámetro de Youla para el diseño algebraico de controladores. Anales de la Universidad Metropolitana. 7 172-204.
- Youla D. Jabr H, Bongiorno, J. (1976). Modern Wiener-Hopf Design of Optimal Contiders & – & Part II : The Multivariable Case. Automatic Control, IEEE Transactions on. 21, 319 – 338.