Gonzalez-Olvera, Marcos A. | Universidad Autónoma de la Ciudad de México |
Martínez-Vásquez, Elías | Universidad Autónoma de la Ciudad de México |
https://doi.org/10.58571/CNCA.AMCA.2024.084
Resumen: This paper presents a practical methodology for tuning a fractional-order PID (FOPID) controller applied to a two-wheeled differential mobile robot. Using the robot’s kinematic model and the particle swarm optimization (PSO) method, the goal is to improve the system’s control precision and stability. Numerical results show that the FOPID controller, compared to its integer-order PID counterpart, offers greater flexibility in parameter tuning and better trajectory tracking performance, achieving a reduction in error. However, challenges related to the FOPID implementation, such as higher computational demand, are also discussed. Future work includes the experimental validation of the results on a physical platform, allowing for the evaluation of the controller’s performance under real-world conditions.
¿Cómo citar?
Gonzalez Olvera, M.A. & Martínez Vásquez, E. (2024). Tuning of a Fractional-Order PID Controllers for Differential Two-Wheeled Mobile Robot Using Particle Swarm Optimization. Memorias del Congreso Nacional de Control Automático 2024, pp. 493-498. https://doi.org/10.58571/CNCA.AMCA.2024.084
Palabras clave
Referencias
- Abajo, M.R., Sierra-García, J.E., and Santos, M. (2022). Evolutive tuning optimization of a pid controller for autonomous path-following robot. In 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021), 451–460. Springer.
- Abed, A.M., Rashid, Z.N., Abedi, F., Zeebaree, S.R., Sahib, M.A., Mohamad Jawad, A.J., Redha Ibraheem, G.A., Maher, R.A., Abdulkareem, A.I., Ibraheem, I.K., et al. (2022). Trajectory tracking of differential drive mobile robots using fractional-order proportional-integral-derivative controller design tuned by an enhanced fruit fly optimization. Measurement and Control, 55(3-4), 209–226.
- Barsan, A. (2019). Position control of a mobile robot through pid controller. Acta Universitatis Cibiniensis. Technical Series, 71(1), 14–20.
- Kamel, M.A. and Zhang, Y. (2014). Developments and challenges in wheeled mobile robot control. In International Conference on Intelligent Unmanned Systems
(ICIUS). - Martinez-Alonso, E.S. and González-Olvera, M.A. (2016). Control fraccionario para un péndulo invertido. In Memorias del Congreso Nacional de Control Automático.
- Meng, J., Liu, A., Yang, Y., Wu, Z., and Xu, Q. (2018). Two-wheeled robot platform based on pid control. In 2018 5th International Conference on Information Science and Control Engineering (ICISCE), 1011–1014. IEEE.
Mohamed, M.J. and Hamza, M.K. (2019). Design pid neural network controller for trajectory tracking of differential drive mobile robot based on pso. Engineering and Technology Journal, 37(12A), 574–583. - Monje, C.A., Vinagre, B.M., Feliu, V., and Chen, Y. (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control engineering practice, 16(7), 798–812.
- Padhy, P.K., Sasaki, T., Nakamura, S., and Hashimoto, H. (2010). Modeling and position control of mobile robot. In 2010 11th IEEE International Workshop on Advanced Motion Control (AMC), 100–105. IEEE.
- Pak, Y.J., Kong, Y.S., and Ri, J.S. (2023). Robust pid optimal tuning of a delta parallel robot based on a hybrid optimization algorithm of particle swarm optimization and differential evolution. Robotica, 41(4), 1159–1178.
- Parhi, D.R. (2005). Navigation of mobile robots using a fuzzy logic controller. Journal of intelligent and robotic systems, 42, 253–273.
Pati, C.S. and Kala, R. (2017). Vision-based robot following using pid control. Technologies, 5(2), 34. - Shah, P. and Agashe, S. (2016). Review of fractional pid controller. Mechatronics, 38, 29–41.
- Somefun, O.A., Akingbade, K., and Dahunsi, F. (2021). The dilemma of pid tuning. Annual Reviews in Control, 52, 65–74.
- Tepljakov, A. (2020). Fomcon toolbox for matlab.
Thai, N.H., Ly, T.T.K., Thien, H., and Dzung, L.Q. (2022). Trajectory tracking control for differential-drive mobile robot by a variable parameter pid controller. International Journal of Mechanical Engineering and Robotics Research, 11(8), 614–621. - Xie, D., Wang, S., and Wang, Y. (2018). Trajectory tracking control of differential drive mobile robot based on improved kinematics controller algorithm. In 2018 Chinese Automation Congress (CAC), 2675–2680. IEEE.