Reyes-Báez, Rodolfo | University of Groningen |
Borja, Pablo | University of Groningen |
van der Schaft, Arjan J. | University of Groningen |
Jayawardhana, Bayu | University of Groningen |
Resumen: In this work, a class of virtual control systems associated to mechanical systems in the Euler-Lagrange (EL) and port-Hamiltonian (pH) energy-based frameworks is introduced, where the behavior of the original system is embedded into the dynamics of the virtual one. The construction of the virtual mechanical systems is based on the notion of virtual forces which are mathematical objects that behave like true forces. Remarkably, the virtual mechanical systems preserve the energy conservation properties of the original mechanical systems, e.g., passivity. Moreover, the aforementioned virtual forces exhibit coordinate-free properties in terms of the underlying geometry of the state space of the mechanical system.
¿Cómo citar?
Rodolfo Reyes-Báez, Pablo Borja, Arjan van der Schaft & Bayu Jayawardhana. Virtual Mechanical Systems: An Energy-Based Approach. Memorias del Congreso Nacional de Control Automático, pp. 465-470, 2019.
Palabras clave
Control de Sistemas No Lineales, Control basado en pasividad, Robótica y Mecatrónica
Referencias
- Bullo, F. and Lewis, A.D. (2004). Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems, volume 49. Springer Science & Business Media.
- Dirksz, D.A. and Scherpen, J.M. (2010). Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. In CCA, 1678–1683.
- Forni, F. and Sepulchre, R. (2014). A differential Lyapunov framework for contraction analysis. IEEE Transactions on Automatic Control.
- Fujimoto, K., Sakurama, K., and Sugie, T. (2003). Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica, 39(12), 2059–2069.
- Jouffroy, J. and Fossen, T.I. (2010). A tutorial on incremental stability analysis using contraction theory. Modeling, Identification and control, 31(3), 93–106.
- Lohmiller, W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems. Automatica.
- Manchester, I.R., Tang, J.Z., and Slotine, J.J.E. (2018). Unifying robot trajectory tracking with control contraction metrics. In Robotics Research, 403–418. Springer.
- Ortega, R., Perez, J.A.L., Nicklasson, P.J., and SiraRamirez, H. (2013). Passivity-based control of EulerLagrange systems. Springer Science & Business Media.
- Ortega, R., van der Schaft, A., Castaños, F., and Astolfi, A. (2008). Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Transactions on Automatic Control, 53.
- Ortega, R., van der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38(4), 585–596.
- Reyes-Báez, R., van der Schaft, A.J., and Jayawardhana, B. (2018a). Virtual differential passivity based control for a class of mechanical systems in the porthamiltonian framework. Submitted.
- Reyes Báez, R. (2019). Virtual Contraction and Passivity based Control of Nonlinear Mechanical Systems. Ph.D. thesis, Rijksuniversiteit Groningen.
- Reyes-Báez, R., Donaire, A., van der Schaft, A., Jayawardhana, B., and Perez, T. (2019). Tracking control of marine craft in the port-Hamiltonian framework: A virtual differential passivity approach. In Proceedings European Control Conference (ECC).
- Reyes-Báez, R., van der Schaft, A., and Jayawardhana, B. (2017). Tracking control of fully-actuated portHamiltonian mechanical systems via sliding manifolds and contraction analysis. IFAC-PapersOnLine, 50(1), 8256 – 8261. 20th IFAC World Congress.
- Reyes-Báez, R., van der Schaft, A., and Jayawardhana, B. (2018b). Passivity based distributed tracking control of networked euler-lagrange systems. IFAC-PapersOnLine, 51(23), 136 – 141. doi: https://doi.org/10.1016/j.ifacol.2018.12.024. 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2018.
- Reyes-Báez, R., van der Schaft, A., and Jayawardhana, B. (2018c). Virtual differential passivity based control for tracking of flexible-joints robots. volume 51, 169 – 174. 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018.
- Romero, J.G., Ortega, R., and Sarras, I. (2015). A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control, 60(3), 818–823.
- Sarras, I., Ortega, R., and Van Der Schaft, A. (2012). On the modeling, linearization and energy shaping control of mechanical systems. In LHMNLC 2012, volume 4, 161–166.
- Slotine, J.J.E. and Li, W. (1987). On the adaptive control of robot manipulators. The international journal of robotics research, 6(3), 49–59.
- Stadlmayr, R. and Schlacher, K. (2008). Tracking control for port-Hamiltonian systems using feedforward and feedback control and a state observer. IFAC Proceedings Volumes, 41(2), 1833–1838.
- van der Schaft, A.J. (2017). L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing. van der Schaft, A.J. and Maschke, B.M. (1995). The hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Elektronik und Ubertragungstechnik, 49(5), 362–371.
- Venkatraman, A., Ortega, R., Sarras, I., and van der Schaft, A. (2010). Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Transactions on Automatic Control.
- Wang, W. and Slotine, J.J.E. (2005). On partial contraction analysis for coupled nonlinear oscillators. Biological cybernetics, 92(1).
- Willems, J.C. (1972). Dissipative dynamical systems, part i: General theory. Arch. Rational Mech. Anal., 45.