Irwin A. Díaz-Díaz | Instituto Potosino de Investigación Científica y Tecnológica |
Eric Campos | Instituto Potosino de Investigación Científica y Tecnológica |
https://doi.org/10.58571/CNCA.AMCA.2023.107
Resumen: Currently, novel approaches are being developed to overcome the imminent Moore’s law failure. The techniques attempt to gain greater computing power by reducing the number of transistors. This work presents the simulation of a reconfigurable voltage logic gate based on the equation of a plane. The proposal is achieved by using two variables of the equation of a plane as inputs and the other as output. The proposed circuit can perform the NAND and NOR logic gates, known as universal logic gates. The simulation results show the feasibility of the proposed reconfigurable logic gate. Also, the presented circuit is compatible with the transistor-transistor-logic and can be modified to implement other logic gates by changing a voltage level.
¿Cómo citar?
Irwin A. Díaz-Díaz, Eric Campos. Toward a Voltage Reconfigurable Logic Gate. Memorias del Congreso Nacional de Control Automático, pp. 503-506, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.107
Palabras clave
Otros Tópicos Afines
Referencias
- Acharya, R.Y., Charlot, N.F., Alam, M.M., Ganji, F., Gauthier, D., and Forte, D. (2021). Chaogate parameter optimization using bayesian optimization and genetic algorithm. In 2021 22nd International Symposium on Quality Electronic Design (ISQED), 426–431. doi:10.1109/ISQED51717.2021.9424355.
- Ashokkumar, P., Aravindh, M.S., Venkatesan, A., and Lakshmanan, M. (2021). Realization of all logic gates and memory latch in the SCCNN cell of the simple nonlinear MLC circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(6). doi:10.1063/5.0046968. URL https://doi.org/10.1063 %2F5.0046968.
- Behnia, S., Pazhotan, Z., Ezzati, N., and Akhshani, A. (2014). Reconfigurable chaotic logic gates based on novel chaotic circuit. Chaos, Solitons Fractals, 69, 74–80. doi:https://doi.org/10.1016/j.chaos.2014.08.011.
- Breyer, E.T., Mulaosmanovic, H., Mikolajick, T., and Slesazeck, S. (2017). Reconfigurable nand/nor logic gates in 28 nm hkmg and 22 nm fd-soi fefet technology. In 2017 IEEE International Electron Devices Meeting (IEDM), 28.5.1–28.5.4. doi: 10.1109/IEDM.2017.8268471.
- Camps, O., Stavrinides, S.G., and Picos, R. (2021). Stochastic computing implementation of chaotic systems. Mathematics, 9(4). doi:10.3390/math9040375. URL https://www.mdpi.com/2227-7390/9/4/375.
- Charlot, N.F. and Gauthier, D.J. (2022). Sensitivity of a chaotic logic gate. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(7), 3339–3343. doi: 10.1109/TCSII.2022.3170266.
- Kia, B., Lindner, J.F., and Ditto, W.L. (2016). A simple nonlinear circuit contains an infinite number of functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(10), 944–948. doi: 10.1109/TCSII.2016.2538358.
- Kia Behnam, L.J.F. and L., D.W. (2017). Nonlinear dynamics as an engine of computation. Trans. R. Soc.
- A, 375. doi:https://doi.org/10.1098/rsta.2016.0222.
- Kohar, V., Kia, B., Lindner, J.F., and Ditto, W.L. (2017). Implementing boolean functions in hybrid digital- analog systems. Rev. Appl., 7, 044006. doi:10.1103/PhysRevApplied.7.044006.
- Malik, G.F.A., Kharadi, M.A., and Khanday, F.A. (2019). Electrically reconfigurable logic design using multi-gate spin field effect transistors. Microelectronics Journal, 90, 278–284. doi: https://doi.org/10.1016/j.mejo.2019.07.003.
- Shalf, J. (2020). The future of computing beyond moore’s law. Trans. R. Soc. A, 378. doi:http://doi.org/10.1098/rsta.2019.0061.