E. Marquez-Acosta | Tecnologico Nacional de Mexico/I. T. La Laguna |
V. De-León-Gómez | Universidad Autónoma de Coahuila |
V. Santibañez | Instituto Tecnologico De La Laguna |
https://doi.org/10.58571/CNCA.AMCA.2023.101
Resumen: Practical problems for the implementation of a real-time controller for gaits subject to disturbances on the NAO robot are shown in this paper. Moreover, how to deal with them and carry out real-time practical stable walkings is explained. The robot is modeled with the Linear Inverted Pendulum (LIP) model, which is a simplified model that concentrates the mass of the robot in a single point and constrains the height of the Center of Mass to a straight line. The controller in charge of keeping a stable gait is the Model Predictive Controller (MPC). The MPC is perhaps the most used controller in legged robots due to its optimization over a time horizon and to the possibility of including constraints in the optimization problem. Furthermore, important notes about the implementation of real-time experiments with the NAO robot are discussed in this work. This work gives the first steps to achieve a real-time control using the Essential Model.
¿Cómo citar?
Marquez-Acosta, Emanuel; De-León-Gómez, Víctor; Santibanez, Victor. Real-Time Implementation of an Online Controller for the Walking of the NAO Robot. Memorias del Congreso Nacional de Control Automático, pp. 580-585, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.101
Palabras clave
Robótica y Mecatrónica; Modelado e Identificación de Sistemas
Referencias
- Bledt, G., Powell, M.J., Katz, B., Di Carlo, J., Wensing, P.M., and Kim, S. (2018). Mit cheetah 3: Design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2245–2252. doi:10.1109/IROS.2018.8593885.
- Budhiraja, R., Carpentier, J., and Mansard, N. (2019). Dynamics consensus between centroidal and wholebody models for locomotion of legged robots. In 2019 International Conference on Robotics and Automation (ICRA), 6727–6733. doi:10.1109/ICRA.2019.8793878.
- Chignoli, M., Kim, D., Stanger-Jones, E., and Kim, S. (2021). The mit humanoid robot: Design, motion planning, and control for acrobatic behaviors. In 2020 IEEE-RAS 20th International Conference on
- Humanoid Robots (Humanoids), 1–8. doi:10.1109/HUMANOIDS47582.2021.9555782.
- De-León-Gómez, V., Luo, Q., Kalouguine, A., Pámanes, J.A., Aoustin, Y., and Chevallereau, C. (2019). An essential model for generating walking motions for humanoid robots. Robotics and Autonomous Systems, 112, 229–243. doi:https://doi.org/10.1016/j.robot.2018.11.015.
- Geyer, H. and Saranli, U. (2019). Gait based on the spring-loaded inverted pendulum. In A. Goswami and P. Vadakkepat (eds.), Humanoid Robotics: A Reference, 923–947. Springer Netherlands, Dordrecht. doi:10.1007/978-94-007-6046-2
- Gouaillier, D., Collette, C., and Kilner, C. (2010). Omnidirectional closed-loop walk for nao. In 2010 10th IEEE-RAS International Conference on Humanoid Robots, 448–454. doi:10.1109/ICHR.2010.5686291.
- Grizzle, J.W. and Chevallereau, C. (2019). Virtual constraints and hybrid zero dynamics for realizing underactuated bipedal locomotion. In A. Goswami and P. Vadakkepat (eds.), Humanoid Robotics: A Reference, 1045–1075. Springer Netherlands, Dordrecht. doi:10.1007/978-94-007-6046-2
- Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), volume 2, 1620–1626 vol.2. doi:10.1109/ROBOT.2003.1241826.
- Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. (2001). The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), volume 1, 239–246 vol.1. doi:10.1109/IROS.2001.973365.
- Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., and Tedrake, R. (2015). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 40. doi:10.1007/s10514-015-9479-3.
- Marquez-Acosta, E. (2023a). Robot nao mpc 3dlip. https://www.youtube.com/watch?v=iqLQVmYi3iw&ab_channel=EmanuelMarquez. Accessed: 2023-06-16.
- Marquez-Acosta, E. (2023b). Robot nao mpc 3dlip part 2. https://www.youtube.com/watch?v=zO7ijpJihow&ab_channel=EmanuelMarquez. Accessed: 2023-06-16.
- Márquez-Acosta, E., De-León-Gómez, V., Santibáñez, V., Chevallereau, C., and Aoustin, Y. (2022). Caminado omnidireccional del robot nao venciendo la restricción de la cadera mediante el modelo esencial. In Congreso Mexicano de Robótica COMRob 2022.
- Orin, D., Goswami, A., and Lee, S. (2013). Centroidal dynamics of a humanoid robot. In Autonomous Robots, volume 35, 161–176. doi:10.1007/s10514-013-9341-4.
- Pratt, J., Carff, J., Drakunov, S., and Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In 2006 6th IEEE-RAS International Conference on Humanoid Robots, 200–207. doi:10.1109/ICHR.2006.321385.
- Strom, J., Slavov, G., and Chown, E. (2010). Omnidirectional walking using zmp and preview control for the nao humanoid robot. In J. Baltes, M.G. Lagoudakis, T. Naruse, and S.S. Ghidary (eds.), RoboCup 2009: Robot Soccer World Cup XIII, 378–389. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Vukobratovic, M. and Borovac, B. (2004). Zero-moment point – thirty five years of its life. J. Humanoid Robotics, 1, 157–173. doi:10.1142/S0219843604000083.
- Wieber, P. (2006). Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In 2006 6th IEEE-RAS International Conference on Humanoid Robots, 137–142. doi:10.1109/ICHR.2006.321375.
- Wieber, P.B. (2008). Viability and predictive control for safe locomotion. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1103–1108. doi:10.1109/IROS.2008.4651022.