Ríos, Héctor | Tecnológico Nacional de México/I.T. La Laguna |
Mera, Manuel | Instituto Politécnico Nacional |
Raïssi, Tarek | Conservatoire National des Arts et Métiers |
Efimov, Denis | Information Technologies Mechanics and Optics University |
https://doi.org/10.58571/CNCA.AMCA.2023.099
Resumen: In this paper, we design a robust control strategy to solve the trajectory-tracking problem for perturbed unicycle mobile robots. The design is composed of an Integral Sliding-Mode Control, an interval predictor-based state-feedback controller and a Model Predictive Control. The controller handles some perturbations in the kinematic model, and state and input constraints that are related to workspace constraints and saturation on the actuators, respectively. The proposed approach ensures the exponential convergence to zero of the tracking error. Some simulation results illustrate the performance of the proposed approach.
¿Cómo citar?
Ríos, Héctor; Mera, Manuel; Raïssi, Tarek; Efimov, Denis. A Robust Interval Predictive Control for Perturbed Unicycle Mobile Robots. Memorias del Congreso Nacional de Control Automático, pp. 574-579, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.099
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica; Control Discontinuo (modos deslizantes)
Referencias
- Brockett, R.W. (1982). Control theory and singular riemannian geometry. In New directions in applied mathematics, 11–27. Springer.
- Castaños, F. and Fridman, L. (2006). Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Transactions on Automatic Control, 51(5), 853–858.
- dos Reis de Souza, A., Efimov, D., and Ra¨ıssi, T. (2022). Robust output feedback MPC for LPV systems using interval observers. IEEE Transactions on Automatic Control, 67(6), 3188–3195.
- Efimov, D., Fridman, L., Ra¨ıssi, T., Zolghadri, A., and Seydou, R. (2012). Interval estimation for LPV systems applying high order sliding mode techniques. Automatica, 48(9), 2365–2371.
- Efimov, D., Perruquetti, W., Ra¨ıssi, T., and Zolghadri, A. (2013a). Interval observers for time-varying discretetime systems. IEEE Transactions on Automatic Control, 58(12), 3218?3224.
- Efimov, D., Raïssi, T., and Zolghadri, A. (2013b). Control of nonlinear and LPV systems: Interval observer- based framework. IEEE Transactions on Automatic Control, 58(3), 773–778.
- Guerra, M., Efimov, D., Zheng, G., and Perruquetti, W. (2016). Avoiding local minima in the potential field method using input-to-state stability. Control Engineering Practice, 55, 174–184.
- Khaledyan, M., Liu, T., Fernandez-Kim, V., and de Queiroz, M. (2015). Flocking and target interception control for formations of nonholonomic kinematic agents. IEEE Transactions on Control Systems Technology, 28(4), 1603–1610.
- Leurent, E., Efimov, D., and Maillard, O.A. (2020). Robust-adaptive interval predictive control for linear uncertain systems. In 2020 59th IEEE Conference on Decision and Control, 1429–1434. Jeju Island, Republic of Korea.
- Mayne, D.Q., Ravokic, S.V., Findeisen, R., and Allgower, F. (2009). Robust output feedback model predictive control of constrained linear systems: time-varying case. Automatica, 45, 2082–2087.
- Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M. (2000). Constrained model predictive control: stability and optimality. Automatica, 36, 789–814.
- Mera, M., Ríos, H., and Martínez, E.A. (2020). A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots. Control Engineering Practice, 102, 104548.
- Rocha, E., Castaños, F., and Moreno, J.A. (2022). Robust finite-time stabilisation of an arbitrary-order nonholonomic system in chained form. Automatica, 135, 109956.
- Rochel, P., Ríos, H., Mera, M., and Dzul, A. (2022). Trajectory tracking for uncertain unicycle mobile robots: A super-twisting approach. Control Engineering Practice, 122, 105078.
- Sun, Z., Dai, L., Liu, K., Xia, Y., and Johansson, K. (2018). Robust MPC for tracking constrained unicycle robots with additive disturbances. Automatica, 90, 172–184.
- Sun, Z., Xia, Y., Dai, L., and Campoy, P. (2020). Tracking of unicycle robots using event-based MPC with adaptive prediction horizon. IEEE/ASME Transactions on Mechatronics, 25(2), 739–749.
- Tayebi, A. and Rachid, A. (2000). Adaptive controller for non-holonomic mobile robots with matched uncertainties. Advanced Robotics, 14(2), 105–118.
- Thomas, M., Bandyopadhyay, B., and Vachhani, L. (2019). Finite-time posture stabilization of the unicycle mobile robot using only position information: A discrete-time sliding mode approach. International Journal of Robust and Nonlinear Control, 29(6), 1990–2006.
- Utkin, V., Guldner, J., and Shi, J. (1999). Sliding Modes in Electromechanical Systems. Taylor and Francis, London.
- Wang, D. and Low, C.B. (2008). Modeling and analysis of skidding and slipping in wheeled mobile robots: Control design perspective. IEEE Transactions on Robotics, 24(3), 676–687.
- Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L., and Wang, T. (2017). Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Transactions on Industrial Electronics, 64(1), 505–516.
- Zhang, M. and Liu, H. (2014). Game-theoretical persistent tracking of a moving target using a unicycletype mobile vehicle. IEEE Transactions on Industrial Electronics, 61(11), 6222–6233.