Huber Giron-Nieto | Universidad Iberoamericana |
Oliver Ochoa-García | Universidad Iberoamericana |
Eduardo Gamaliel Hernandez-Martinez | Universidad Iberoamericana |
Mario Ramírez-Neria | CINVESTAV-IPN |
Guillermo Fernandez-Anaya | Universidad Iberoamericana |
Enrique D. Ferreira-Vazquez | Universidad Católica del Uruguay |
Jose Job Flores-Godoy | Universidad Católica del Uruguay |
https://doi.org/10.58571/CNCA.AMCA.2023.105
Resumen: A cyber-physical formation includes all the strategies to coordinate mobile robots moving in different physical workspaces sharing information through internet and the cloud. This work addresses a formation scheme of robots moving in two different workspaces. The control strategy is based on virtual agents used like “avatars" which must converge to the position of the robots in the opposite workspace. The control approach is designed for robots modeled as single integrators and extended to the case of unicycle-type robots. Results of numerical simulations and real experiments are shown using a low-cost cyber-physical micro-robot platform based on a camera as position and orientation sensor.
¿Cómo citar?
Giron-Nieto, Huber; Ochoa-Garcia, Oliver; Hernandez-Martinez, Eduardo Gamaliel; Ramirez-Neria, Mario; Fernández Anaya, Guillermo; Ferreira, Enrique D.; Flores-Godoy, Jose-Job. Cyber-physical Multi-robot Formation: Virtual Agents Approach and Low-Cost
Experiments. Memorias del Congreso Nacional de Control Automático, pp. 507-512, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.105
Palabras clave
Sistemas Multi-Agente; Robótica y Mecatrónica; Control de Sistemas Lineales
Referencias
- Canudas de Wit, C., Siciliano, B., and Bastin, G. (eds.) (1996). Theory of Robot Control. Springer London.
- Escobar, L., Moyano, C., Aguirre, G., Guerra, G., Allauca, L., and Loza, D. (2020). Multi-robot platform with features of cyber-physical systems for education applications. In 2020 IEEE ANDESCON, 1–6
- Farrugia, J.L. and Fabri, S.G. (2018). Swarm robotics for object transportation. In 2018 UKACC 12th International Conference on Control (CONTROL), 353–358
- Ferreira-Vazquez, E.D., Hern´andez-Mart´ınez, E.G., Flores-Godoy, J.J., Fernandez-Anaya, G., and Paniagua-Contro, P. (2016). Distance-based formation control using angular information between robots. Journal of Intelligent & Robotic Systems, 83(3), 543–560
- Gallo, T., Cagnetti, C., Silvestri, C., and Ruggieri, A. (2021). Industry 4.0 tools in lean production: A systematic literature review. Procedia Computer Science, 180, 394– Proceedings of the 2nd International Conference on Industry 4.0 and Smart Manufacturing (ISM 2020).
- González-Sierra, J., Aranda-Bricaire, E., and Hernandez- Martinez, E.G. (2013). Formation tracking with orientation convergence for groups of unicycles. International Journal of Advanced Robotic Systems, 10(3), 180.
- Hernandez-Martinez, E.G., Foyo-Valdes, S.A., Puga-Velazquez, E.S., and Meda-Campaña, J.A. (2014). Hybrid architecture for coordination of agvs in fms. Journal of Advanced Robotic Systems, 11(3), 41.
- Hernandez-Martinez, E.G., Flores-Godoy, J.J., and Fernandez-Anaya, G. (2013). Decentralized discretetime formation control for multirobot systems. Discrete Dynamics in Nature and Society, 2013, 746713.
- Kim, K.J., Suh, I.H., Kim, S.H., and Oh, S.R. (2008). A novel real-time control architecture for internetbased thin-client robot; simulacrum-based approach. In 2008 IEEE International Conference on Robotics and Automation, 4080–4085
- Kruglova, T., Schmelev, I., Sushkov, I., and Filatov, R. (2019). Cyber-physical system of the mobile robot’s optimal trajectory planning with taking into account electric motors deterioration. In 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 1–5
- Lian, Y., Xie,W., Yang, Q., Zhang, L., Lin, D., and Zhou, Y. (2021). A novel multi-warehouse mobile robot hierarchical scheduling strategy based on industrial cyberphysical system. In 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), 263–269
- Lo, W.T., Liu, Y.H., Elhajj, I., Xi, N., Shi, Y., and Wang, Y. (2003). Co-operative control of internet based multirobot systems with force reflection. In 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), volume 3, 4414–4419
- Lopez-Gonzalez, A., Ferreira, E., Hernández-Martínez, E.G., Flores-Godoy, J.J., Fernandez-Anaya, G., and Paniagua-Contro, P. (2016). Multi-robot formation control using distance and orientation. Advanced Robotics, 30(14), 901–913
- Mantha, B.R., Jung, M.K., García de Soto, B., Menassa, C.C., and Kamat, V.R. (2020). Generalized task allocation and route planning for robots with multiple depots in indoor building environments. Automation in Construction, 119, 103359.
- Oh, K.K., Park, M.C., and Ahn, H.S. (2015). A survey of multi-agent formation control. Automatica, 53, 424–440
- Olfati-Saber, R. (2007). Design of behavior of swarms: From flocking to data fusion using microfilter networks. In Cooperative Control of Distributed Multi-Agent Systems, 19– John Wiley & Sons, Ltd.
- Pikner, H., Sell, R., Karjust, K., Malayjerdi, E., and Velsker, T. (2021). Cyber-physical control system for autonomous logistic robot. In 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), 699–704
- Shahzad, A. and Roth, H. (2016). Bilateral telecontrol of automerlin mobile robot with fix communication delay. In 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1–6
- Valentim, T., Cunha, R., Oliveira, P., Cabecinhas, D., and Silvestre, C. (2019). Multi-vehicle cooperative control for load transportation. IFAC-PapersOnLine, 52(12), 358– 21st IFAC Symposium on Automatic Control in Aerospace ACA 2019.