Ramos Hernández, Elías | Centro Nacional de Investigación y Desarrollo Tecnológico |
Astorga-Zaragoza, Carlos | Centro Nacional de Investigación y Desarrollo Tecnológico |
Reyes Reyes, Juan | Centro Nacional de Investigación y Desarrollo Tecnológico |
Ramírez-Rasgado, Felipe | Centro Nacional de Investigación y Desarrollo Tecnológico |
Osorio-Gordillo, Gloria-Lilia | Centro Nacional de Investigación y Desarrollo Tecnológico |
Ruiz-Acosta, Silvia del Carmen | TecNM/Zona Olmeca |
https://doi.org/10.58571/CNCA.AMCA.2023.091
Resumen: The on-line supervision of the process variables in a steam distillation plant is the main objective of this work. For this end, a nonlinear observer is designed based on the mathematical model proposed by Cerpa et al. (2008). The model has three differential equations, which reproduce the dynamics of the oil mass throughout the three stages of the process: (i) Loss of oil from plant material, (ii) Biphasic (oil-water) layer, (iii) Colected essential oil. The purpose of this work is to estimate the mass flow of oil lost by the plant material and the mass flow in the two-phase layer called the aqueous layer. Both process variables are difficult to measure physically, but it is important to know them because they can have an impact on the performance of the process. However, the mass of oil collected is considered to be an available variable to measure. By taking this consideration into account, a nonlinear Luenberger type observer is designed that takes as available output the mass of oil collected, and from this variable is able to estimate the dynamics of the unavailable variables.
¿Cómo citar?
Ramos Hernández, Elías; Astorga-Zaragoza, Carlos; Reyes Reyes, Juan; Ramírez-Rasgado, Felipe; Osorio-Gordillo, Gloria-Lilia; Ruiz-Acosta, Silvia del Carmen. Estimation of Process Variables in a Steam Distillation Plant. Memorias del Congreso Nacional de Control Automático, pp. 621-626, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.091
Palabras clave
Control de Procesos; Control de Sistemas No Lineales; Modelado e Identificación de Sistemas
Referencias
- Besan,con, G. (2007). Nonlinear observers and applications, volume 363. Springer.
- Cerpa, M.G., Mato, R.B., and Jose Cocero, M. (2008). Modeling steam distillation of essential oils: application to lavandin super oil. AIChE Journal, 54(4), 909–917
- Karim, B., Jalal, S., and Abdellatif, E.A. (2017). Fuzzy observer design for a class of takagiugeno descriptor systems subject to unknown inputs. IEEE Conference on Control Applications.
- Koul, V., Gandotra, B., Koul, S., Ghosh, S., Tikoo, C., and Gupta, A. (2004). Steam distillation of lemon grass (cymbopogon spp.). Indian Journal of Chemical Technology, 11.
- Löfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the CACSD Conference. Taipei, Taiwan.
- Moreno, J., López, G., and Jara, R.S. (2010). Modelación y optimización del proceso de extracción de aceite esencial de eucalipto (eucalyptus globulus). Scientia
- Agropecuaria, 1(2), 147–154
- Patil, K. (2023). Distillation operations: Methods, operational and design issues. Chemical Engineering and Industrial Chemistry.
- Ramos, L.d.C., Di Meglio, F., Morgenthaler, V., da Silva, L.F.F., and Bernard, P. (2020). Numerical design of Luenberger observers for nonlinear systems. In 2020 59th IEEE Conference on Decision and Control (CDC), 5435– IEEE.
- Trinh, H. and Fernando, T. (2011). Functional observers for dynamical systems, volume 420. Springer Science & Business Media.
- Valderrama, F. and Ruiz, F. (2018). An optimal control approach to steam distillation of essential oils from aromatic plants. Computers & Chemical Engineering, 117, 25–31
- Zerhouni, A.R. (2017). Mod´elisation du transfert de mati`ere lors de l’extraction de l’huile essentielle et des polyph´enols du Laurus Nobilis L. par hydrodistillation. Ph.D. thesis.