Santamaria-Padilla, Luis | Universidad Nacional Autónoma de México |
Canales-Meza, Luis Alberto | Universidad Nacional Autónoma de México |
Alvarez, Jesus | Universidad Autónoma Metropolitana |
Alvarez-Icaza, Luis | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2023.090
Resumen: As first step towards the consideration of the associated control-estimator design problem, in this study the problem of drawing a low-order finite-dimensional DA model of the bi/tristable OPDE one of a spatially distributed throated biomass gasification reactors is addressed, with focus on the description of the practical steady state (SS) of highest conversion. The reactor is described by 15 nonlinear PDEs, which are numerically solved using finite differences to discretize the spatial domain. The number and placement of nodes along the axial direction of the reactor act as degrees of freedom that must be carefully chosen. In this study, a node location method, initially developed for a different class of reactors, is applied to the throated reactor. It was found that the desired SS can be effectively described by relocating some nodes using the adaptive mesh method, which results in a model order smaller than the case with an uniform node distribution. It was also observed that one must be mindful of the discretization near the air entrance, as excessive discretization in that zone can lead to poor descriptions of the desired SS or increase unnecessarily the model order (and consequently, the number of equations to be solved online). The results presented here lay the groundwork for improving the adaptive mesh location method to extend its application to throated gasifiers, thereby ensuring accurate numerical solutions for control and estimation tasks.
¿Cómo citar?
Santamaria-Padilla, Luis; Canales-Meza, Luis Alberto; Alvarez, Jesus; Alvarez-Icaza, Luis. Low Order Modeling of a Biomass Throated Gasification Reactor. Memorias del Congreso Nacional de Control Automático, pp. 627-632, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.090
Palabras clave
Control de Procesos; Modelado e Identificación de Sistemas; Sistemas de Parámetros Distribuidos
Referencias
- Amundson, N. R., & Arri, L. E. (1978). Char gasification in a countercurrent reactor. AIChE Journal, 24(1), 87–101. https://doi.org/10.1002/aic.690240110
- Badillo-Hernandez, U., Alvarez, J., & Alvarez-Icaza, L. (2019). Efficient modeling of the nonlinear dynamics of tubular heterogeneous reactors. Computers and Chemical Engineering, 123, 389–406. https://doi.org/10.1016/j.compchemeng.2019.01.018
- Barrio, M. (2002). Experimental investigation of small-scale gasification of woody biomass. Canales-Meza, L. A., Badillo-Hernandez, U., Alvarez-Icaza, L., & Alvarez, J. (2017). Low order online modeling of a distributed syngas reactor. In Memorias del Congreso Nacional de la Asociación de México de Control Automático, Monterrey, Nuevo León, México. 2017.
- Dasappa, S., Subbukrishna, D. N., Suresh, K. C., Paul, P. J., & Prabhu, G. S. (2011). Operational experience on a grid connected 100 kWe biomass gasification power plant in Karnataka, India. Energy for sustainable development, 15(3), 231-239.
- Di Blasi, C. (2000). Dynamic behaviour of stratified downdraft gasifiers. Chemical Engineering Science, 55(15), 2931–2944. https://doi.org/10.1016/S0009-2509(99)00562-X.
- Heidenreich, S., & Foscolo, P. U. (2015). New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, 72–95. https://doi.org/10.1016/j.pecs.2014.06.002
- Hundsdorfer, W., & Verwer, J. G. (2003). Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. In SIAM Review (Vol. 33).
- LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and timedependent problems. Society for Industrial and Applied Mathematics Manurung, R. K., & Beenackers, A. A. C. M. (1993). Modeling and simulation of an open core down-draft moving bed rice husk gasifier. Advances in thermochemical biomass conversion, 288-309.
- Milligan, J. B. (1996). Downdraft gasification of biomass. Patra, T. K., & Sheth, P. N. (2015, October 1). Biomass gasification models for downdraft gasifier: A state-ofthe-art review. Renewable and Sustainable Energy Reviews, Vol. 50, pp. 583–593. https://doi.org/10.1016/j.rser.2015.05.012
- Reed, T. B., & Markson, M. (1985). Biomass Gasification Reaction Velocities. In Fundamentals of Thermochemical Biomass Conversion (pp. 951–965). Springer Netherlands. https://doi.org/10.1007/978-94-009-4932-4_53
- Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and sustainable energy reviews, 18, 174-183.
- Santamaria-Padilla, L., Alvarez-Icaza, L., & Alvarez, J. (2016). “Modelado con validación experimental de un gasificador de biomasa." Memorias del Congreso Nacional de Control Automático, Querétaro, Querétaro, México. 2016.
- Santamaria-Padilla, L., Badillo-Hernandez, U., Álvarez, J., & Álvarez-Icaza, L. (2022). On the nonlinear dynamics of biomass throated tubular gasification reactors. Computers & Chemical Engineering, 107828. https://doi.org/10.1016/j.compchemeng.2022.107828
- Shwe, S. y Roberts, D. (2016). Addressing the barriers to greater penetration of gasification based BioEnergy. BioEnergy Australia Conference 2016.
- Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76(March), 989–1003. https://doi.org/10.1016/j.rser.2017.03.112
- Yucel, O., & Hastaoglu, M. A. (2016). Kinetic modeling and simulation of throated downdraft gasifier. Fuel Processing Technology, 144, 145–154. https://doi.org/10.1016/j.fuproc.2015.12.023