Julio A. Báez-Hernández | CINVESTAV-IPN |
Sabine Mondie | CINVESTAV-IPN |
Martín Velasco-Villa | CINVESTAV-IPN |
https://doi.org/10.58571/CNCA.AMCA.2023.100
Resumen: This work focuses on the trajectory tracking problem of an input-delayed omnidirectional mobile robot affected by a constant disturbance in the time delay. The trajectory-tracking solution is based on a prediction strategy that represents a generalization of the well-known sub-prediction strategy developed for the linear case. It is formally proven that the prediction scheme provides the future state of the system and that a feedback law based on the future predicted state solves the trajectory tracking problem under some assumptions related to the size of the disturbance and the number of sub-predictors considered. To evaluate the prediction-based strategy, numerical simulations are carried out showing an adequate performance of the overall closed-loop system.
¿Cómo citar?
Báez-Hernández, Julio Alejandro; Mondie, Sabine; Velasco-Villa, Martin. Non-Linear Prediction Scheme for an Omnidirectional Mobile Robot with Disturbed Time Delay. Memorias del Congreso Nacional de Control Automático, pp. 562-567, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.100
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica; Otros Tópicos Afines
Referencias
- Canudas de Wit, C., Bastin, G., and Siciliano, B. (1996). Theory of Robot Control. Springer-Verlag, Berlin, Heidelberg, 1st edition.
- Egorov, A.V. and Mondi´e, S. (2015). The delay lyapunov matrix in robust stability analysis of time-delay systems.
- Fragoso-Rubio, V., Velasco-Villa, M., Hernandez-Perez, M.A., del Muro-Cuellar, B., and Márquez-Rubio, J.F. (2019). Prediction–observer scheme for linear systems with input–output time delay. International Journal of Control, Automation and System, 17.
- Germani, A., Manes, C., and Pepe, P. (2002). A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47, 96–101.
- Hou, M., Ztek, P., and Patton, R.J. (2002). An observer design for linear time-delay systems. IEEE Transactions on Automatic Control, 47, 121–125.
- Kharitonov, V.L. (2013). Time-Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser.
- Krstic, M. (2009). Delay compensation for nonlinear, adaptive, and PDE systems. Springer.
- Luenberger, D. (1971). An introduction to observers. IEEE Transactions on Automatic Control, 16, 596–602.
- Mazenc, F. and Bliman, P.A. (2006). Backstepping design for time delay nonlinear systems. IEEE Transactions on Automatic Control, 51, 149–154.
- Najafi, M., Hosseinnia, S., Sheikholeslam, F., and Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86.
- Niculescu, S.I. (2001). Delay Effects on Stability, A Robust Control Approach. Springer.
- Palmor, Z.J. (1996). Time-delay compensation Smith predictor and its modifications. The Control Handbook, 1, 224–229.
- Santos, J., Concei,cao, A., Santos, T., and Araujo, H. (2018). Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation. Mechatronics, 52, 7–21.
- Sira-Ramírez, H., López-Uribe, C., and Velasco-Villa, M. (2010). Trajectory-tracking control of an input delayed omnidirectional mobile robot. In International Conference on Electrical Engineering, Computing Science and Automatic Control(CCE).
- Smith, O.J.M. (1957). Closer control of loops with deadtime. Eng. Prog., 53(5), 217–219.
- Thau, F.E. (1973). Observing the state of non-linear dynamic systems. International Journal of Control, 17(3), 471–479.
- Velasco-Villa, M., del Muro-Cuellar, B., and Alvarez-Aguirre, A. (2007). Smith-predictor compensator for a delayed omnidirectional mobile robot. In Mediterranean Conference on Control and Automation.
- Velasco-Villa, M., Mandujano-García, E., Estrada-Sanchez, I., Rodriguez-Cortes, H., and Sira-Ramírez, H. (2014). Esquema predictor-observador para el control de un robot móvil omnidireccional con retardos de tiempo. In Congreso Latinoamericano de Control Automático.