Márquez-González, David | Universidad Autónoma de la Ciudad de México |
Gonzalez-Olvera, Marcos A. | Universidad Autónoma de la Ciudad de México |
Avila-Becerril, Sofia | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2023.096
Resumen: In this work, an isolated single-phase microgrid based on parallel-connected inverters is analyzed to supply the power demanded by the load. A controller based on the interconnection of Hamiltonian systems with fuzzy components is proposed to attack the problem of current tracking and voltage regulation, as well as a droop controller for power dispatch. It is determined that the incorporation of a structure based on fuzzy logic improves the transient response of the closed-loop system in current and voltage monitoring. Comparative numerical results are shown to demonstrate the effectiveness of the proposed scheme.
¿Cómo citar?
Márquez-González, David; Gonzalez-Olvera, Marcos A.; Avila-Becerril, Sofia. Power Dispatch Fuzzy Control-Based Strategy for Improved Performance in Single-Phase Microgrids. Memorias del Congreso Nacional de Control Automático, pp. 597-602, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.096
Palabras clave
Sistemas Eléctricos de Potencia; Control Basado en pasividad; Control Difuso
Referencias
- Al Maruf, A., Dubey, A., and Roy, S. (2021). Smallsignal voltage stability analysis for droop controlled inverter-based microgrids: an algebraic graph theory perspective. In 2021 IEEE Power & Energy Society General Meeting (PESGM), 01–05. IEEE.
- Avila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., and Garcés, A. (2018). Control of a detailed model of microgrids from a hamiltonian approach. IFACPapersOnLine, 51(3), 187–192.
- Chen, M., Zhou, D., Tayyebi, A., Prieto-Araujo, E., Dörfler, F., and Blaabjerg, F. (2022). Generalized multivariable grid-forming control design for power converters. IEEE Transactions on Smart Grid, 13(4), 2873–2885.
- Dragicevic, T., Vazquez, S., and Wheeler, P. (2021). Advanced control methods for power converters in dg systems and microgrids. IEEE Transactions on Industrial Electronics, 68(7), 5847–5862.
- Eberlein, S. and Rudion, K. (2021). Small-signal stability modelling, sensitivity analysis and optimization of droop controlled inverters in lv microgrids. International Journal of Electrical Power & Energy Systems, 125, 106404.
- Konstantopoulos, G.C., Zhong, Q.C., Ren, B., and Krstic, M. (2015). Bounded droop controller for parallel operation of inverters. Automatica, 53, 320–328.
- Lasseter, R.H., Chen, Z., and Pattabiraman, D. (2020). Grid forming inverters: A critical asset for the power grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 925–935.
- Ortega-Velázquez, I., Avila-Becerril, S., and Espinosa-Pérez, G. (2020). A droop approach for the passivity-based control of microgrids. IFAC-PapersOnLine, 53(2), 12962–12967.
- Perez-DeLaMora, D.A., Quiroz-Ibarra, J.E., Fernandez-Anaya, G., and Hernandez-Martinez, E.G. (2021). Roadmap on community-based microgrids deployment: An extensive review. Energy Reports.
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J., and Sezi, T. (2014). Conditions for stability of droop-controlled inverter-based microgrids. Automatica, 50(10), 2457-2469.
- Tielens, P. and Van Hertem, D. (2016). The relevance of inertia in power systems. Renewable and Sustainable Energy Reviews, 55, 999–1009. doi:https://doi.org/10.1016/j.rser.2015.11.016.
- Zhong, Q.C. and Hornik, T. (2013). Control of Power Inverters in Renewable Energy and Smart Grid Integration. John Wiley & Sons.