Calvo, Cesar | Sonora Institute of Technology |
Vázquez, David | Sonora Institute of Technology |
Bernal, Miguel | Sonora Institute of Technology |
https://doi.org/10.58571/CNCA.AMCA.2023.093
Resumen: Real-time implementation of a sliding mode control scheme based on the unit vector approach, for a variety of underactuated configurations of a mechatronics kit (rotational, inertia, and double pendulum) is presented in this work. Details are given to perform diffeomorphisms leading to the required normal form, based on which design conditions are cast as linear matrix inequalities, thus improving numerical systematicness of the traditional methodology. Once the control law is designed, its implementation requires reliable estimates of the velocities since the different plants under consideration do not measure them; to this end, Levant’s robust differentiator is employed. Results are provided that show the effectiveness of the proposal.
¿Cómo citar?
Calvo, Cesar; Vázquez, David; Bernal, Miguel. Real-Time Control of Underactuated Systems in a Mechatronics Kit Via a Novel LMI-Based Sliding Mode Approach. Memorias del Congreso Nacional de Control Automático, pp. 531-537, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.093
Palabras clave
Control Discontinuo (modos deslizantes); Robótica y Mecatrónica; Control de Sistemas No Lineales
Referencias
- Angeli, D. (2001). Almost global stabilization of the inverted pendulum via continuous state feedback. Automatica, 37(7), 1103–1108.
- Ashari, A.E. (2004). Sliding-mode control of active suspension systems: unit vector approach. In Proceedings of the 2004 IEEE International Conference on Control Applications, 2004., volume 1, 370–375. IEEE.
- Begovich, O., Sanchez, E.N., and Maldonado, M. (2002). Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot. IEEE Transactions on Control Systems Technology, 10(1), 14–20.
- Bernal, M., Sala, A., Lendek, Z., and Guerra, T.M. (2022). Analysis and Synthesis of Nonlinear Control Systems. Springer.
- Boyd, S., Ghaoui, L.E., Feron, E., and Belakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, volume 15. SIAM: Studies In Applied Mathematics, Philadelphia, USA.
- Capriotti, E. and Marti-Renom, M.A. (2008). Rna structure alignment by a unit-vector approach. Bioinformatics, 24(16), i112–i118.
- Edwards, C. and Spurgeon, S. (1998). Sliding mode control: theory and applications. Taylor and Francis Ltd., UK, Padstow, UK.
- Farwig, M., Zu, H., and Unbehauen, H. (1990). Discrete computer control of a triple-inverted pendulum. Optimal Control Applications and Methods, 11(2), 157–171.
- Fliegner, T. and Smith, M. (1998). On the robustness of continuously approximated sliding mode schemes. IFAC Proceedings Volumes, 31(17), 237–242.
- Furuta, K., Kajiwara, H., and Kosuge, K. (1980). Digital control of a double inverted pendulum on an inclined rail. International Journal of control, 32(5), 907–924.
- Furuta, K., Yamakita, M., and Kobayashi, S. (1992). Swing-up control of inverted pendulum using pseudostate feedback. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 206(4), 263–269.
- Gahinet, P., Nemirovski, A., Laub, A.J., and Chilali, M. (1995). LMI Control Toolbox. Math Works, Natick, USA.
- Hajkarami, H., Ahmadi, M.S., and Danesh, M. (2010). Unit vector approach based sliding mode control of a small-scale unmanned helicopter. In IEEE ICCA 2010, 28–33. IEEE.
- Hern´andez, V.M. (2003). A combined sliding modegeneralized pi control scheme for swinging up and balancing the inertia wheel pendulum. Asian Journal of Control, 5(4), 620–625.
- Izutsu, M., Pan, Y., and Furuta, K. (2008). Swing-up of furuta pendulum by nonlinear sliding mode control. SICE Journal of Control, Measurement, and System Integration, 1(1), 12–17.
- Khalid, N. and Memon, A.Y. (2014). Output feedback stabilization of an inertia wheel pendulum using sliding mode control. In 2014 UKACC International Conference on Control (CONTROL), 157–162. IEEE.
- Khalil, H. (2014). Nonlinear Control. Prentice Hall, New Jersey, USA.
- Lee, T.B. and Yang, H.S. (2009). Sliding surface design by eigenstructure assignment and sliding mode control of matched uncertain systems. Journal of Institute of Control, Robotics and Systems, 15(8), 812–817.
- Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International journal of control, 76(9-10), 924–941.
- Quanser (2006). Mechatronics control kit user’s manual. kit manual.
- Ryan, E. and Corless, M. (1984). Ultimate boundedness and asymptotic stability of a class of uncertain dynamical systems via continuous and discontinuous feedback control. IMA journal of mathematical control and information, 1(3), 223–242.
- Spong, M.W., Corke, P., and Lozano, R. (2001). Nonlinear control of the reaction wheel pendulum. Automatica, 37(11), 1845–1851.
- Sun, N., Fang, Y., and Chen, H. (2015). A novel sliding mode control method for an inertia wheel pendulum system. In 2015 International Workshop on Recent Advances in Sliding Modes (RASM), 1–6. IEEE.
- Van Kien, C., Son, N.N., and Anh, H.P.H. (2016). A stable lyapunov approach of advanced sliding mode control for swing up and robust balancing implementation for the pendubot system. In AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, 411–425. Springer.
- Wadi, A., Lee, J.H., and Romdhane, L. (2018). Nonlinear sliding mode control of the furuta pendulum. In 2018 11th International Symposium on Mechatronics and its Applications (ISMA), 1–5. IEEE.
- Xu, J., Niu, Y., Lim, C.C., and Shi, P. (2020). Memory output-feedback integral sliding mode control for furuta pendulum systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(6), 2042–2052.
- Yoo, D.S. (2013). Balancing control for the pendubot using sliding mode. In IEEE ISR 2013, 1–4. IEEE.
- Zehar, D. and Benmahammed, K. (2013). Optimal sliding mode control of the pendubot. Research J. of Computer Sci. and Information Syst.(IRJCSIS), 2(3), 45–51.